Mostrar el registro sencillo del ítem

dc.contributor.author
Sofonea, Mircea  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2022-10-21T18:18:50Z  
dc.date.issued
2020-10  
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; On the Tykhonov Well-Posedness of an Antiplane Shear Problem; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 17; 5; 10-2020; 1-21  
dc.identifier.issn
1660-5446  
dc.identifier.uri
http://hdl.handle.net/11336/174412  
dc.description.abstract
We consider a boundary value problem which describes the frictional antiplane shear of an elastic body. The process is static and friction is modeled with a slip-dependent version of Coulomb’s law of dry friction. The weak formulation of the problem is in the form of a quasivariational inequality for the displacement field, denoted by P. We associated with problem P a boundary optimal control problem, denoted by Q. For Problem P, we introduce the concept of well-posedness and for Problem Q we introduce the concept of weakly and weakly generalized well-posedness, both associated with appropriate Tykhonov triples. Our main results are Theorems 5 and 16. Theorem 5 provides the well-posedness of Problem P and, as a consequence, the continuous dependence of the solution with respect to the data. Theorem 16 provides the weakly generalized well-posedness of Problem Q and, under additional hypothesis, its weakly well posedness. The proofs of these theorems are based on arguments of compactness, lower semicontinuity, monotonicity and various estimates. Moreover, we provide the mechanical interpretation of our well-posedness results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANTIPLANE SHEAR CONTACT  
dc.subject
APPROXIMATING SEQUENCE  
dc.subject
CONVERGENCE  
dc.subject
COULOMB FRICTION  
dc.subject
OPTIMAL CONTROL  
dc.subject
TYKHONOV WELL-POSEDNESS  
dc.subject
VARIATIONAL INEQUALITY  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the Tykhonov Well-Posedness of an Antiplane Shear Problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-19T15:07:24Z  
dc.identifier.eissn
1660-5454  
dc.journal.volume
17  
dc.journal.number
5  
dc.journal.pagination
1-21  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Sofonea, Mircea. Universite de Perpignan; Francia  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.journal.title
Mediterranean Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00009-020-01577-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00009-020-01577-5