Mostrar el registro sencillo del ítem
dc.contributor.author
Sofonea, Mircea
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2022-10-21T18:18:50Z
dc.date.issued
2020-10
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; On the Tykhonov Well-Posedness of an Antiplane Shear Problem; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 17; 5; 10-2020; 1-21
dc.identifier.issn
1660-5446
dc.identifier.uri
http://hdl.handle.net/11336/174412
dc.description.abstract
We consider a boundary value problem which describes the frictional antiplane shear of an elastic body. The process is static and friction is modeled with a slip-dependent version of Coulomb’s law of dry friction. The weak formulation of the problem is in the form of a quasivariational inequality for the displacement field, denoted by P. We associated with problem P a boundary optimal control problem, denoted by Q. For Problem P, we introduce the concept of well-posedness and for Problem Q we introduce the concept of weakly and weakly generalized well-posedness, both associated with appropriate Tykhonov triples. Our main results are Theorems 5 and 16. Theorem 5 provides the well-posedness of Problem P and, as a consequence, the continuous dependence of the solution with respect to the data. Theorem 16 provides the weakly generalized well-posedness of Problem Q and, under additional hypothesis, its weakly well posedness. The proofs of these theorems are based on arguments of compactness, lower semicontinuity, monotonicity and various estimates. Moreover, we provide the mechanical interpretation of our well-posedness results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANTIPLANE SHEAR CONTACT
dc.subject
APPROXIMATING SEQUENCE
dc.subject
CONVERGENCE
dc.subject
COULOMB FRICTION
dc.subject
OPTIMAL CONTROL
dc.subject
TYKHONOV WELL-POSEDNESS
dc.subject
VARIATIONAL INEQUALITY
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the Tykhonov Well-Posedness of an Antiplane Shear Problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-19T15:07:24Z
dc.identifier.eissn
1660-5454
dc.journal.volume
17
dc.journal.number
5
dc.journal.pagination
1-21
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Sofonea, Mircea. Universite de Perpignan; Francia
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.journal.title
Mediterranean Journal Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00009-020-01577-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00009-020-01577-5
Archivos asociados