Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the Tykhonov Well-Posedness of an Antiplane Shear Problem

Sofonea, Mircea; Tarzia, Domingo AlbertoIcon
Fecha de publicación: 10/2020
Editorial: Birkhauser Verlag Ag
Revista: Mediterranean Journal Of Mathematics
ISSN: 1660-5446
e-ISSN: 1660-5454
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We consider a boundary value problem which describes the frictional antiplane shear of an elastic body. The process is static and friction is modeled with a slip-dependent version of Coulomb’s law of dry friction. The weak formulation of the problem is in the form of a quasivariational inequality for the displacement field, denoted by P. We associated with problem P a boundary optimal control problem, denoted by Q. For Problem P, we introduce the concept of well-posedness and for Problem Q we introduce the concept of weakly and weakly generalized well-posedness, both associated with appropriate Tykhonov triples. Our main results are Theorems 5 and 16. Theorem 5 provides the well-posedness of Problem P and, as a consequence, the continuous dependence of the solution with respect to the data. Theorem 16 provides the weakly generalized well-posedness of Problem Q and, under additional hypothesis, its weakly well posedness. The proofs of these theorems are based on arguments of compactness, lower semicontinuity, monotonicity and various estimates. Moreover, we provide the mechanical interpretation of our well-posedness results.
Palabras clave: ANTIPLANE SHEAR CONTACT , APPROXIMATING SEQUENCE , CONVERGENCE , COULOMB FRICTION , OPTIMAL CONTROL , TYKHONOV WELL-POSEDNESS , VARIATIONAL INEQUALITY
Ver el registro completo
 
Archivos asociados
Tamaño: 497.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/174412
DOI: http://dx.doi.org/10.1007/s00009-020-01577-5
URL: https://link.springer.com/article/10.1007/s00009-020-01577-5
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Sofonea, Mircea; Tarzia, Domingo Alberto; On the Tykhonov Well-Posedness of an Antiplane Shear Problem; Birkhauser Verlag Ag; Mediterranean Journal Of Mathematics; 17; 5; 10-2020; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES