Mostrar el registro sencillo del ítem
dc.contributor.author
Chiapella, Luciana Carla
dc.contributor.author
García, María del Carmen
dc.date.available
2022-10-21T16:32:56Z
dc.date.issued
2020-07
dc.identifier.citation
Chiapella, Luciana Carla; García, María del Carmen; Performance evaluation of different computational methods to estimate Wood's lactation curve by nonlinear mixed-effects models; Taylor & Francis; Communications In Statistics-simulation And Computation; 7-2020; 1-12
dc.identifier.issn
0361-0918
dc.identifier.uri
http://hdl.handle.net/11336/174394
dc.description.abstract
Nonlinear mixed-effects models allow modeling repeated measures over time. The fixed effects of these models allow incorporating covariates, whereas the random effects reflect the multiple sources of heterogeneity and correlation between and within the units. To estimate the parameters of these models, it is necessary to use iterative processes, which can be done through different approaches, some of which are applied by the statistical software SAS. In this work, through simulation, we studied the performance of the estimators of a Wood’s incomplete gamma function, obtained through three different methods: linearization method through a Taylor series expansion on the empirical best linear unbiased predictor of random effects, applied by the NLINMIX macro, and expansion around the expected value of random effects, applied by both the NLINMIX macro and the NLMIXED procedure. We also investigated the impact of an incorrect specification of the covariance matrix for random errors. The linearization method through a Taylor series expansion on the empirical best linear unbiased predictor of random effects, applied by the NLINMIX macro, provided estimators with good performance, approximately normally distributed and with biases lower than those obtained with the other methods, even when the covariance matrix for random errors was incorrectly specified.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INCOMPLETE GAMMA FUNCTION
dc.subject
LACTATION CURVE
dc.subject
LONGITUDINAL DATA
dc.subject
NONLINEAR MIXED-EFFECTS MODELS
dc.subject
WOOD’S MODEL
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Producción Animal y Lechería
dc.subject.classification
Producción Animal y Lechería
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Performance evaluation of different computational methods to estimate Wood's lactation curve by nonlinear mixed-effects models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-19T15:08:14Z
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Chiapella, Luciana Carla. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: García, María del Carmen. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina
dc.journal.title
Communications In Statistics-simulation And Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/03610918.2020.1804581
Archivos asociados