Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Performance evaluation of different computational methods to estimate Wood's lactation curve by nonlinear mixed-effects models

Chiapella, Luciana CarlaIcon ; García, María del Carmen
Fecha de publicación: 07/2020
Editorial: Taylor & Francis
Revista: Communications In Statistics-simulation And Computation
ISSN: 0361-0918
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad; Producción Animal y Lechería

Resumen

Nonlinear mixed-effects models allow modeling repeated measures over time. The fixed effects of these models allow incorporating covariates, whereas the random effects reflect the multiple sources of heterogeneity and correlation between and within the units. To estimate the parameters of these models, it is necessary to use iterative processes, which can be done through different approaches, some of which are applied by the statistical software SAS. In this work, through simulation, we studied the performance of the estimators of a Wood’s incomplete gamma function, obtained through three different methods: linearization method through a Taylor series expansion on the empirical best linear unbiased predictor of random effects, applied by the NLINMIX macro, and expansion around the expected value of random effects, applied by both the NLINMIX macro and the NLMIXED procedure. We also investigated the impact of an incorrect specification of the covariance matrix for random errors. The linearization method through a Taylor series expansion on the empirical best linear unbiased predictor of random effects, applied by the NLINMIX macro, provided estimators with good performance, approximately normally distributed and with biases lower than those obtained with the other methods, even when the covariance matrix for random errors was incorrectly specified.
Palabras clave: INCOMPLETE GAMMA FUNCTION , LACTATION CURVE , LONGITUDINAL DATA , NONLINEAR MIXED-EFFECTS MODELS , WOOD’S MODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.457Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/174394
DOI: https://doi.org/10.1080/03610918.2020.1804581
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Chiapella, Luciana Carla; García, María del Carmen; Performance evaluation of different computational methods to estimate Wood's lactation curve by nonlinear mixed-effects models; Taylor & Francis; Communications In Statistics-simulation And Computation; 7-2020; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES