Mostrar el registro sencillo del ítem
dc.contributor.author
Peterson, Victoria
dc.contributor.author
Nieto, Nicolás
dc.contributor.author
Wyser, Dominik
dc.contributor.author
Lambercy, Olivier
dc.contributor.author
Gassert, Roger
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Spies, Ruben Daniel
dc.date.available
2022-10-14T11:06:30Z
dc.date.issued
2022-02-01
dc.identifier.citation
Peterson, Victoria; Nieto, Nicolás; Wyser, Dominik; Lambercy, Olivier; Gassert, Roger; et al.; Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 69; 2; 1-2-2022; 807-817
dc.identifier.issn
0018-9294
dc.identifier.uri
http://hdl.handle.net/11336/173138
dc.description.abstract
Objective: This paper tackles the cross-sessions variability of electroencephalography-based brain-computer interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use. Methods: We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from a new session are transported to a calibration session, and thereby avoiding model retraining. Several domain adaptation approaches are evaluated and compared. We simulated two possible online scenarios: i) block-wise adaptation and ii) sample-wise adaptation. In this study, we collect a dataset of 10 subjects performing a hand motor imagery task in 2 sessions. A publicly available dataset is also used. Results: For the first scenario, results indicate that classifier retraining can be avoided by means of our backward formulation yielding to equivalent classification performance as compared to retraining solutions. In the second scenario, classification performance rises up to 90.23% overall accuracy when the label of the indicated mental task is used to learn the transport. Adaptive time is between 10 and 80 times faster than the other methods. Conclusions: The proposed method is able to mitigate the cross-session variability in motor imagery BCIs. Significance: The backward formulation is an efficient retraining-free approach built to avoid lengthy calibration times. Thus, the BCI can be actively used after just a few minutes of setup. This is important for practical applications such as BCI-based motor rehabilitation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN-COMPUTER INTERFACES
dc.subject
DOMAIN ADAPTATION
dc.subject
MOTOR IMAGERY
dc.subject
OPTIMAL TRANSPORT
dc.subject
TRANSFER LEARNING
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-20T10:47:38Z
dc.journal.volume
69
dc.journal.number
2
dc.journal.pagination
807-817
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D. C
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Wyser, Dominik. No especifíca;
dc.description.fil
Fil: Lambercy, Olivier. No especifíca;
dc.description.fil
Fil: Gassert, Roger. No especifíca;
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Ieee Transactions On Bio-medical Engineering
dc.relation.isreferencedin
info:eu-repo/semantics/reference/url/https://ri.conicet.gov.ar/admin/retrieve/2f94849f-84de-4184-9ffb-f71012198614/CONICET_Digital_Nro.039ad8b3-65f1-4328-a288-3d83813a3f5a_B.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TBME.2021.3105912
Archivos asociados