Mostrar el registro sencillo del ítem

dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Nieto, Nicolás  
dc.contributor.author
Wyser, Dominik  
dc.contributor.author
Lambercy, Olivier  
dc.contributor.author
Gassert, Roger  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Spies, Ruben Daniel  
dc.date.available
2022-10-14T11:06:30Z  
dc.date.issued
2022-02-01  
dc.identifier.citation
Peterson, Victoria; Nieto, Nicolás; Wyser, Dominik; Lambercy, Olivier; Gassert, Roger; et al.; Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 69; 2; 1-2-2022; 807-817  
dc.identifier.issn
0018-9294  
dc.identifier.uri
http://hdl.handle.net/11336/173138  
dc.description.abstract
Objective: This paper tackles the cross-sessions variability of electroencephalography-based brain-computer interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use. Methods: We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from a new session are transported to a calibration session, and thereby avoiding model retraining. Several domain adaptation approaches are evaluated and compared. We simulated two possible online scenarios: i) block-wise adaptation and ii) sample-wise adaptation. In this study, we collect a dataset of 10 subjects performing a hand motor imagery task in 2 sessions. A publicly available dataset is also used. Results: For the first scenario, results indicate that classifier retraining can be avoided by means of our backward formulation yielding to equivalent classification performance as compared to retraining solutions. In the second scenario, classification performance rises up to 90.23% overall accuracy when the label of the indicated mental task is used to learn the transport. Adaptive time is between 10 and 80 times faster than the other methods. Conclusions: The proposed method is able to mitigate the cross-session variability in motor imagery BCIs. Significance: The backward formulation is an efficient retraining-free approach built to avoid lengthy calibration times. Thus, the BCI can be actively used after just a few minutes of setup. This is important for practical applications such as BCI-based motor rehabilitation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN-COMPUTER INTERFACES  
dc.subject
DOMAIN ADAPTATION  
dc.subject
MOTOR IMAGERY  
dc.subject
OPTIMAL TRANSPORT  
dc.subject
TRANSFER LEARNING  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T10:47:38Z  
dc.journal.volume
69  
dc.journal.number
2  
dc.journal.pagination
807-817  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington D. C  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Nieto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Wyser, Dominik. No especifíca;  
dc.description.fil
Fil: Lambercy, Olivier. No especifíca;  
dc.description.fil
Fil: Gassert, Roger. No especifíca;  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Ieee Transactions On Bio-medical Engineering  
dc.relation.isreferencedin
info:eu-repo/semantics/reference/url/https://ri.conicet.gov.ar/admin/retrieve/2f94849f-84de-4184-9ffb-f71012198614/CONICET_Digital_Nro.039ad8b3-65f1-4328-a288-3d83813a3f5a_B.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TBME.2021.3105912