Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces

Peterson, VictoriaIcon ; Nieto, NicolásIcon ; Wyser, Dominik; Lambercy, Olivier; Gassert, Roger; Milone, Diego HumbertoIcon ; Spies, Ruben DanielIcon
Fecha de publicación: 01/02/2022
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions On Bio-medical Engineering
ISSN: 0018-9294
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Objective: This paper tackles the cross-sessions variability of electroencephalography-based brain-computer interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use. Methods: We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from a new session are transported to a calibration session, and thereby avoiding model retraining. Several domain adaptation approaches are evaluated and compared. We simulated two possible online scenarios: i) block-wise adaptation and ii) sample-wise adaptation. In this study, we collect a dataset of 10 subjects performing a hand motor imagery task in 2 sessions. A publicly available dataset is also used. Results: For the first scenario, results indicate that classifier retraining can be avoided by means of our backward formulation yielding to equivalent classification performance as compared to retraining solutions. In the second scenario, classification performance rises up to 90.23% overall accuracy when the label of the indicated mental task is used to learn the transport. Adaptive time is between 10 and 80 times faster than the other methods. Conclusions: The proposed method is able to mitigate the cross-session variability in motor imagery BCIs. Significance: The backward formulation is an efficient retraining-free approach built to avoid lengthy calibration times. Thus, the BCI can be actively used after just a few minutes of setup. This is important for practical applications such as BCI-based motor rehabilitation.
Palabras clave: BRAIN-COMPUTER INTERFACES , DOMAIN ADAPTATION , MOTOR IMAGERY , OPTIMAL TRANSPORT , TRANSFER LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.071Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/173138
DOI: http://dx.doi.org/10.1109/TBME.2021.3105912
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Peterson, Victoria; Nieto, Nicolás; Wyser, Dominik; Lambercy, Olivier; Gassert, Roger; et al.; Transfer Learning Based on Optimal Transport for Motor Imagery Brain-Computer Interfaces; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 69; 2; 1-2-2022; 807-817
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES