Mostrar el registro sencillo del ítem
dc.contributor.author
Dieulefait, Luis Victor
dc.contributor.author
Pacetti, Ariel Martín
dc.contributor.author
Tsaknias, Panagiotis
dc.date.available
2022-10-12T17:45:37Z
dc.date.issued
2021-04
dc.identifier.citation
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860
dc.identifier.issn
1435-9855
dc.identifier.uri
http://hdl.handle.net/11336/172757
dc.description.abstract
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
European Mathematical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
GALOIS ORBITS
dc.subject
MAEDA'S CONJECTURE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the number of Galois orbits of newforms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-19T16:07:11Z
dc.identifier.eissn
1435-9863
dc.journal.volume
23
dc.journal.number
8
dc.journal.pagination
2833-2860
dc.journal.pais
Suiza
dc.journal.ciudad
Zürich
dc.description.fil
Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España
dc.description.fil
Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Tsaknias, Panagiotis. No especifíca;
dc.journal.title
Journal of the European Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/JEMS/1073
Archivos asociados