Mostrar el registro sencillo del ítem

dc.contributor.author
Dieulefait, Luis Victor  
dc.contributor.author
Pacetti, Ariel Martín  
dc.contributor.author
Tsaknias, Panagiotis  
dc.date.available
2022-10-12T17:45:37Z  
dc.date.issued
2021-04  
dc.identifier.citation
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860  
dc.identifier.issn
1435-9855  
dc.identifier.uri
http://hdl.handle.net/11336/172757  
dc.description.abstract
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
GALOIS ORBITS  
dc.subject
MAEDA'S CONJECTURE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the number of Galois orbits of newforms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-19T16:07:11Z  
dc.identifier.eissn
1435-9863  
dc.journal.volume
23  
dc.journal.number
8  
dc.journal.pagination
2833-2860  
dc.journal.pais
Suiza  
dc.journal.ciudad
Zürich  
dc.description.fil
Fil: Dieulefait, Luis Victor. Universidad de Barcelona; España  
dc.description.fil
Fil: Pacetti, Ariel Martín. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Tsaknias, Panagiotis. No especifíca;  
dc.journal.title
Journal of the European Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/doi/10.4171/JEMS/1073  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/JEMS/1073