Artículo
On the number of Galois orbits of newforms
Fecha de publicación:
04/2021
Editorial:
European Mathematical Society
Revista:
Journal of the European Mathematical Society
ISSN:
1435-9855
e-ISSN:
1435-9863
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Counting the number of Galois orbits of newforms in Sk(Γ0(N) and giving some arithmetic sense to this number is an interesting open problem. The case N D 1 corresponds to Maeda's conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16. In this article we give local invariants of Galois orbits of newforms for general N and count their number. Using an existence result of newforms with prescribed local invariants we prove a lower bound for the number of non-CM Galois orbits of newforms for Γ00(N) for large enough weight k (under some technical assumptions on N). Numerical evidence suggests that in most cases this lower bound is indeed an equality, thus we leave as a question the possibility that a generalization of Maeda's conjecture could follow from our work. We finish the paper with some natural generalizations of the problem and show some of the implications that a generalization of Maeda's conjecture has.
Palabras clave:
GALOIS ORBITS
,
MAEDA'S CONJECTURE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Dieulefait, Luis Victor; Pacetti, Ariel Martín; Tsaknias, Panagiotis; On the number of Galois orbits of newforms; European Mathematical Society; Journal of the European Mathematical Society; 23; 8; 4-2021; 2833-2860
Compartir
Altmétricas