Artículo
Minimal faithful representations of the free 2-step nilpotent Lie algebra of the rank r
Fecha de publicación:
01/02/2021
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
e-ISSN:
1090-266X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a finite dimensional Lie algebra g, let z(g) denote the center of g and let μ(g) be the minimal possible dimension for a faithful representation of g. In this paper we obtain μ(Lr,2), where Lr,k is the free k-step nilpotent Lie algebra of rank r. In particular we prove that μ(Lr,2)=⌈2r(r−1)⌉+2 for r≥4. It turns out that μ(Lr,2)∼μ(z(Lr,2))∼2dimLr,2 (as r→∞) and we present some evidence that this could be true for Lr,k for any k. This is considerably lower than the known bounds for μ(Lr,k), which are (for fixed k) polynomial in dimLr,k.
Palabras clave:
ADO'S THEOREM
,
FREE LIE ALGEBRA
,
MINIMAL REPRESENTATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Cagliero, Leandro Roberto; Rojas, Nadina Elizabeth; Minimal faithful representations of the free 2-step nilpotent Lie algebra of the rank r; Academic Press Inc Elsevier Science; Journal of Algebra; 567; 1-2-2021; 719-741
Compartir
Altmétricas