Artículo
The Waring's problem over finite fields through generalized Paley graphs
Fecha de publicación:
05/2021
Editorial:
Elsevier Science
Revista:
Discrete Mathematics
ISSN:
0012-365X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that the Waring number over a finite field Fq, denoted as g(k,q), when exists coincides with the diameter of the generalized Paley graph Γ(k,q)=Cay(Fq,Rk) with Rk={xk:x∈Fq∗}. We find infinite new families of exact values of g(k,q) from a characterization of graphs Γ(k,q) which are also Hamming graphs proved by Lim and Praeger in 2009. Then, we show that every positive integer is the Waring number for some pair (k,q) with q not a prime. Finally, we find a lower bound for g(k,p) with p prime by using that Γ(k,p) is a circulant graph in this case.
Palabras clave:
CAYLEY GRAPHS
,
FINITE FIELDS
,
GENERALIZED PALEY GRAPHS
,
WARING NUMBER
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; The Waring's problem over finite fields through generalized Paley graphs; Elsevier Science; Discrete Mathematics; 344; 5; 5-2021; 1-13
Compartir
Altmétricas