Mostrar el registro sencillo del ítem

dc.contributor.author
Eyigoz, Elif  
dc.contributor.author
Courson, Melody  
dc.contributor.author
Sedeño, Lucas  
dc.contributor.author
Rogg, Katharina  
dc.contributor.author
Orozco Arroyave, Juan Rafael  
dc.contributor.author
Nöth, Elmar  
dc.contributor.author
Skodda, Sabine  
dc.contributor.author
Trujillo, Natalia  
dc.contributor.author
Rodríguez, Mabel  
dc.contributor.author
Rusz, Jan  
dc.contributor.author
Muñoz, Edinson  
dc.contributor.author
Cardona, Juan Felipe  
dc.contributor.author
Herrera, Eduar  
dc.contributor.author
Hesse Rizzi, Eugenia Fátima  
dc.contributor.author
Ibañez, Agustin Mariano  
dc.contributor.author
Cecchi, Guillermo Alberto  
dc.contributor.author
García, Adolfo Martín  
dc.date.available
2022-09-29T14:27:10Z  
dc.date.issued
2020-11  
dc.identifier.citation
Eyigoz, Elif; Courson, Melody; Sedeño, Lucas; Rogg, Katharina; Orozco Arroyave, Juan Rafael; et al.; From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages; Elsevier; Cortex; 132; 11-2020; 191-205  
dc.identifier.issn
0010-9452  
dc.identifier.uri
http://hdl.handle.net/11336/171015  
dc.description.abstract
Embodied cognition research on Parkinson's disease (PD) points to disruptions of frontostriatal language functions as sensitive targets for clinical assessment. However, no existing approach has been tested for crosslinguistic validity, let alone by combining naturalistic tasks with machine-learning tools. To address these issues, we conducted the first classifier-based examination of morphological processing (a core frontostriatal function) in spontaneous monologues from PD patients across three typologically different languages. The study comprised 330 participants, encompassing speakers of Spanish (61 patients, 57 matched controls), German (88 patients, 88 matched controls), and Czech (20 patients, 16 matched controls). All subjects described the activities they perform during a regular day, and their monologues were automatically coded via morphological tagging, a computerized method that labels each word with a part-of-speech tag (e.g., noun, verb) and specific morphological tags (e.g., person, gender, number, tense). The ensuing data were subjected to machine-learning analyses to assess whether differential morphological patterns could classify between patients and controls and reflect the former's degree of motor impairment. Results showed robust classification rates, with over 80% of patients being discriminated from controls in each language separately. Moreover, the most discriminative morphological features were associated with the patients' motor compromise (as indicated by Pearson r correlations between predicted and collected motor impairment scores that ranged from moderate to moderate-to-strong across languages). Taken together, our results suggest that morphological patterning, an embodied frontostriatal domain, may be distinctively affected in PD across languages and even under ecological testing conditions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOMATED SPEECH ANALYSIS  
dc.subject
CROSS-LINGUISTIC VALIDITY  
dc.subject
LINGUISTIC ASSESSMENTS  
dc.subject
MORPHOLOGY  
dc.subject
PARKINSON'S DISEASE  
dc.subject.classification
Lingüística  
dc.subject.classification
Lengua y Literatura  
dc.subject.classification
HUMANIDADES  
dc.subject.classification
Psicología  
dc.subject.classification
Psicología  
dc.subject.classification
CIENCIAS SOCIALES  
dc.title
From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T15:09:26Z  
dc.journal.volume
132  
dc.journal.pagination
191-205  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Eyigoz, Elif. IBM Research. Thomas J. Watson Research Center; Estados Unidos  
dc.description.fil
Fil: Courson, Melody. University of Montreal; Canadá  
dc.description.fil
Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina  
dc.description.fil
Fil: Rogg, Katharina. Universität Würzburg; Alemania  
dc.description.fil
Fil: Orozco Arroyave, Juan Rafael. Friedrich-Alexander-Universität; Alemania. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Nöth, Elmar. Friedrich-Alexander-Universität; Alemania  
dc.description.fil
Fil: Skodda, Sabine. Ruhr Universität Bochum; Alemania  
dc.description.fil
Fil: Trujillo, Natalia. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Rodríguez, Mabel. National Institute Of Mental Health; República Checa. Karlova Univerzita; República Checa  
dc.description.fil
Fil: Rusz, Jan. Czech Technical University In Prague; República Checa  
dc.description.fil
Fil: Muñoz, Edinson. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Cardona, Juan Felipe. Universidad del Valle; Colombia  
dc.description.fil
Fil: Herrera, Eduar. Universidad Icesi; Colombia  
dc.description.fil
Fil: Hesse Rizzi, Eugenia Fátima. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina  
dc.description.fil
Fil: Ibañez, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. Universidad Autónoma del Caribe; Colombia. Universidad Adolfo Ibañez; Chile. University of California; Estados Unidos  
dc.description.fil
Fil: Cecchi, Guillermo Alberto. IBM Research. Thomas J. Watson Research Center; Estados Unidos  
dc.description.fil
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Santiago de Chile; Chile. Universidad de San Andrés; Argentina. University of California; Estados Unidos. Universidad Catolica de Cuyo. Facultad de Educacion.; Argentina  
dc.journal.title
Cortex  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010945220303245  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.cortex.2020.08.020