Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages

Eyigoz, Elif; Courson, Melody; Sedeño, LucasIcon ; Rogg, Katharina; Orozco Arroyave, Juan Rafael; Nöth, Elmar; Skodda, Sabine; Trujillo, Natalia; Rodríguez, Mabel; Rusz, Jan; Muñoz, Edinson; Cardona, Juan Felipe; Herrera, Eduar; Hesse Rizzi, Eugenia FátimaIcon ; Ibañez, Agustin MarianoIcon ; Cecchi, Guillermo Alberto; García, Adolfo MartínIcon
Fecha de publicación: 11/2020
Editorial: Elsevier
Revista: Cortex
ISSN: 0010-9452
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Lingüística; Psicología

Resumen

Embodied cognition research on Parkinson's disease (PD) points to disruptions of frontostriatal language functions as sensitive targets for clinical assessment. However, no existing approach has been tested for crosslinguistic validity, let alone by combining naturalistic tasks with machine-learning tools. To address these issues, we conducted the first classifier-based examination of morphological processing (a core frontostriatal function) in spontaneous monologues from PD patients across three typologically different languages. The study comprised 330 participants, encompassing speakers of Spanish (61 patients, 57 matched controls), German (88 patients, 88 matched controls), and Czech (20 patients, 16 matched controls). All subjects described the activities they perform during a regular day, and their monologues were automatically coded via morphological tagging, a computerized method that labels each word with a part-of-speech tag (e.g., noun, verb) and specific morphological tags (e.g., person, gender, number, tense). The ensuing data were subjected to machine-learning analyses to assess whether differential morphological patterns could classify between patients and controls and reflect the former's degree of motor impairment. Results showed robust classification rates, with over 80% of patients being discriminated from controls in each language separately. Moreover, the most discriminative morphological features were associated with the patients' motor compromise (as indicated by Pearson r correlations between predicted and collected motor impairment scores that ranged from moderate to moderate-to-strong across languages). Taken together, our results suggest that morphological patterning, an embodied frontostriatal domain, may be distinctively affected in PD across languages and even under ecological testing conditions.
Palabras clave: AUTOMATED SPEECH ANALYSIS , CROSS-LINGUISTIC VALIDITY , LINGUISTIC ASSESSMENTS , MORPHOLOGY , PARKINSON'S DISEASE
Ver el registro completo
 
Archivos asociados
Tamaño: 1.373Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/171015
URL: https://www.sciencedirect.com/science/article/pii/S0010945220303245
DOI: https://doi.org/10.1016/j.cortex.2020.08.020
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Eyigoz, Elif; Courson, Melody; Sedeño, Lucas; Rogg, Katharina; Orozco Arroyave, Juan Rafael; et al.; From discourse to pathology: Automatic identification of Parkinson's disease patients via morphological measures across three languages; Elsevier; Cortex; 132; 11-2020; 191-205
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES