Mostrar el registro sencillo del ítem

dc.contributor.author
Groisman, Pablo Jose  
dc.contributor.author
Jonckheere, Matthieu Thimothy Samson  
dc.contributor.author
Sapienza, Facundo  
dc.date.available
2022-09-28T16:54:21Z  
dc.date.issued
2022-02  
dc.identifier.citation
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo; Nonhomogeneous Euclidean first-passage percolation and distance learning; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 28; 1; 2-2022; 255-276  
dc.identifier.issn
1350-7265  
dc.identifier.uri
http://hdl.handle.net/11336/170790  
dc.description.abstract
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Mathematical Statistics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DISTANCE LEARNING  
dc.subject
EUCLIDEAN FIRST-PASSAGE PERCOLATION  
dc.subject
NONHOMOGENEOUS POINT PROCESSES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nonhomogeneous Euclidean first-passage percolation and distance learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-09T11:50:03Z  
dc.identifier.eissn
1573-9759  
dc.journal.volume
28  
dc.journal.number
1  
dc.journal.pagination
255-276  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Jonckheere, Matthieu Thimothy Samson. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Sapienza, Facundo. No especifíca;  
dc.journal.title
Bernoulli - Mathematical Statistics And Probability  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/bernoulli/volume-28/issue-1/Nonhomogeneous-Euclidean-first-passage-percolation-and-distance-learning/10.3150/21-BEJ1341.short  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3150/21-BEJ1341  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1810.09398