Artículo
Nonhomogeneous Euclidean first-passage percolation and distance learning
Fecha de publicación:
02/2022
Editorial:
Institute of Mathematical Statistics
Revista:
Bernoulli - Mathematical Statistics And Probability
ISSN:
1350-7265
e-ISSN:
1573-9759
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Consider an i.i.d. sample from an unknown density function supported on an unknown manifold embedded in a high dimensional Euclidean space. We tackle the problem of learning a distance between points, able to capture both the geometry of the manifold and the underlying density. We define such a sample distance and prove the convergence, as the sample size goes to infinity, to a macroscopic one that we call Fermat distance as it minimizes a path functional, resembling Fermat principle in optics. The proof boils down to the study of geodesics in Euclidean first-passage percolation for nonhomogeneous Poisson point processes.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Groisman, Pablo Jose; Jonckheere, Matthieu Thimothy Samson; Sapienza, Facundo; Nonhomogeneous Euclidean first-passage percolation and distance learning; Institute of Mathematical Statistics; Bernoulli - Mathematical Statistics And Probability; 28; 1; 2-2022; 255-276
Compartir
Altmétricas