Mostrar el registro sencillo del ítem

dc.contributor.author
Chiappini, Fabricio Alejandro  
dc.contributor.author
Allegrini, Franco  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.contributor.author
Olivieri, Alejandro Cesar  
dc.date.available
2022-09-23T17:39:46Z  
dc.date.issued
2020-08  
dc.identifier.citation
Chiappini, Fabricio Alejandro; Allegrini, Franco; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Sensitivity for Multivariate Calibration based on Multilayer Perceptron Artificial Neural Networks; American Chemical Society; Analytical Chemistry; 92; 18; 8-2020; 12265-12272  
dc.identifier.issn
0003-2700  
dc.identifier.uri
http://hdl.handle.net/11336/170271  
dc.description.abstract
The use of machine learning for multivariate spectroscopic data analysis in applications related to process monitoring has become very popular since non-linearities in the relationship between signal and predicted variables are commonly observed. In this regard, the use of artificial neural networks (ANN) to develop calibration models has demonstrated to be more appropriate and flexible than classical multivariate linear methods. The most frequently reported type of ANN is the so-called multilayer perceptron (MLP). Nevertheless, the latter models still lack a complete statistical characterization in terms of prediction uncertainty, which is an advantage of the parametric counterparts. In the field of analytical calibration, developments regarding the estimation of prediction errors would derive in the calculation of other analytical figures of merit (AFOMs), such as sensitivity, analytical sensitivity, and limits of detection and quantitation. In this work, equations to estimate the sensitivity in MLP-based calibrations were deduced and are here reported for the first time. The reliability of the derived sensitivity parameter was assessed through a set of simulated and experimental data. The results were also applied to a previously reported MLP fluorescence calibration methodology for the biopharmaceutical industry, yielding a value of sensitivity ca. 30 times larger than for the univariate reference method.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
non-linear systems  
dc.subject
multilayer perceptron,  
dc.subject
artificial neural networks  
dc.subject
calibration sensitivity  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sensitivity for Multivariate Calibration based on Multilayer Perceptron Artificial Neural Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-22T15:11:08Z  
dc.journal.volume
92  
dc.journal.number
18  
dc.journal.pagination
12265-12272  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Chiappini, Fabricio Alejandro. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Olivieri, Alejandro Cesar. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.journal.title
Analytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.analchem.0c01863  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.analchem.0c01863