Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sensitivity for Multivariate Calibration based on Multilayer Perceptron Artificial Neural Networks

Chiappini, Fabricio AlejandroIcon ; Allegrini, FrancoIcon ; Goicoechea, Hector CasimiroIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 08/2020
Editorial: American Chemical Society
Revista: Analytical Chemistry
ISSN: 0003-2700
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

The use of machine learning for multivariate spectroscopic data analysis in applications related to process monitoring has become very popular since non-linearities in the relationship between signal and predicted variables are commonly observed. In this regard, the use of artificial neural networks (ANN) to develop calibration models has demonstrated to be more appropriate and flexible than classical multivariate linear methods. The most frequently reported type of ANN is the so-called multilayer perceptron (MLP). Nevertheless, the latter models still lack a complete statistical characterization in terms of prediction uncertainty, which is an advantage of the parametric counterparts. In the field of analytical calibration, developments regarding the estimation of prediction errors would derive in the calculation of other analytical figures of merit (AFOMs), such as sensitivity, analytical sensitivity, and limits of detection and quantitation. In this work, equations to estimate the sensitivity in MLP-based calibrations were deduced and are here reported for the first time. The reliability of the derived sensitivity parameter was assessed through a set of simulated and experimental data. The results were also applied to a previously reported MLP fluorescence calibration methodology for the biopharmaceutical industry, yielding a value of sensitivity ca. 30 times larger than for the univariate reference method.
Palabras clave: non-linear systems , multilayer perceptron, , artificial neural networks , calibration sensitivity
Ver el registro completo
 
Archivos asociados
Tamaño: 1.538Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/170271
URL: https://pubs.acs.org/doi/10.1021/acs.analchem.0c01863
DOI: http://dx.doi.org/10.1021/acs.analchem.0c01863
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Chiappini, Fabricio Alejandro; Allegrini, Franco; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; Sensitivity for Multivariate Calibration based on Multilayer Perceptron Artificial Neural Networks; American Chemical Society; Analytical Chemistry; 92; 18; 8-2020; 12265-12272
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES