Mostrar el registro sencillo del ítem
dc.contributor.author
Wang, Cuizhen

dc.contributor.author
Bentivegna, Diego Javier

dc.contributor.author
Smeda, Reid J.

dc.contributor.author
Swanigan, Randy E.

dc.date.available
2017-05-26T18:34:05Z
dc.date.issued
2010-05-01
dc.identifier.citation
Wang, Cuizhen; Bentivegna, Diego Javier; Smeda, Reid J.; Swanigan, Randy E.; Comparing classification approaches for mapping cut-leaved teasel in highway environments; Amer Soc Photogrammetry; Photogrammetric Engineering And Remote Sensing; 76; 9; 1-5-2010; 567-575
dc.identifier.issn
0099-1112
dc.identifier.uri
http://hdl.handle.net/11336/16978
dc.description.abstract
Cut-leaved teasel is an invasive weed thriving in roadside environments and needs to be detected for implementation of management programs. This study tested several commonly applied classifiers to map teasel with an aerial hyperspectral image along the Interstate Highway 70 in central Missouri. A teasel/non-teasel mask was first built to exclude dominant land-covers that had distinct spectral differences from teasel. The spectral angle mapping (SAM) had the best results of delineating teasel from herbaceous background with its user’s and producer’s accuracies of 80 to 90 percent. Large commission errors of teasel were observed in the probability-based maximum likelihood classifier (MLC) and spectral information divergence (SID) methods. Compared with a regular land-use/land-cover classification in an unsupervised/supervised hybrid method, the post-masking SAM had much easier process of training data collection and achieved similar accuracies. It could be an optimal approach for mapping teasel and other weeds in highway environments.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Amer Soc Photogrammetry

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Hyperspectral
dc.subject
Teasel
dc.subject
Mapping
dc.subject.classification
Otras Ciencias Agrícolas

dc.subject.classification
Otras Ciencias Agrícolas

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
Comparing classification approaches for mapping cut-leaved teasel in highway environments
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-10T14:20:30Z
dc.journal.volume
76
dc.journal.number
9
dc.journal.pagination
567-575
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Wang, Cuizhen. University Of Missouri; Estados Unidos
dc.description.fil
Fil: Bentivegna, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
dc.description.fil
Fil: Smeda, Reid J.. University Of Missouri; Estados Unidos
dc.description.fil
Fil: Swanigan, Randy E.. Missouri Department of Transportation; Estados Unidos
dc.journal.title
Photogrammetric Engineering And Remote Sensing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asprs/pers/2010/00000076/00000005/art00003
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.14358/PERS.76.5.567
Archivos asociados