Artículo
Block transitive codes attaining the Tsfasman-Vladut-Zink bound
Fecha de publicación:
06/2020
Editorial:
Springer
Revista:
Designs Codes And Cryptography
ISSN:
0925-1022
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the asymptotic behaviour of a class of algebraic geometry codes, which we call block-transitive, that generalizes the classes of transitive and quasi-transitive codes. We prove by using towers of algebraic function fields with either wild or tame ramification, that there are sequences of codes in this family attaining the Tsfasman–Vladut–Zink bound over finite fields of square cardinality. We give the exact length of each code in these sequences as well as explicit lower bounds for their parameters.
Palabras clave:
ALGEBRAIC GEOMETRY CODES
,
FINITE FIELDS
,
TOWERS OF FUNCTION FIELDS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Chara, María de Los Ángeles; Podesta, Ricardo Alberto; Toledano, Ricardo Daniel; Block transitive codes attaining the Tsfasman-Vladut-Zink bound; Springer; Designs Codes And Cryptography; 88; 6; 6-2020; 1227-1253
Compartir
Altmétricas