Artículo
Patterns in random fractals
Fecha de publicación:
06/2020
Editorial:
Johns Hopkins University Press
Revista:
American Journal Of Mathematics
ISSN:
1080-6377
e-ISSN:
0002-9327
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the existence of certain geometric configurations in the fractal percolation limit set A in terms of the almost sure dimension of A. Some examples of the configurations we study are: homothetic copies of finite sets, angles, distances, and volumes of simplices. In the spirit of relative Szemer´edi theorems for random discrete sets, we also consider the corresponding problem for sets of positive ν-measure, where ν is the natural measure on A. In both cases we identify the dimension threshold for each class of configurations. These results are obtained by investigating the intersections of the products of m independent realizations of A with transversal planes and, more generally, algebraic varieties, and extend some well known features of independent percolation on trees to a setting with long-range dependencies.
Palabras clave:
PATTERNS
,
RANDOM FRACTALS
,
FRACTAL PERCOLATION
,
PROGRESSIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Shmerkin, Pablo Sebastian; Suomala, Ville; Patterns in random fractals; Johns Hopkins University Press; American Journal Of Mathematics; 142; 3; 6-2020; 683-749
Compartir
Altmétricas