Mostrar el registro sencillo del ítem

dc.contributor.author
Amherdt, Sebastián  
dc.contributor.author
Di Leo, Néstor Cristian  
dc.contributor.author
Balbarani, Sebastian  
dc.contributor.author
Pereira, Ayelen  
dc.contributor.author
Cornero, Cecilia  
dc.contributor.author
Pacino, Maria Cristina  
dc.date.available
2022-09-06T11:23:06Z  
dc.date.issued
2021-09  
dc.identifier.citation
Amherdt, Sebastián; Di Leo, Néstor Cristian; Balbarani, Sebastian; Pereira, Ayelen; Cornero, Cecilia; et al.; Exploiting Sentinel-1 data time-series for crop classification and harvest date detection; Taylor & Francis Ltd; International Journal of Remote Sensing; 42; 19; 9-2021; 7313-7331  
dc.identifier.issn
0143-1161  
dc.identifier.uri
http://hdl.handle.net/11336/167471  
dc.description.abstract
Light source independence and the advantage of being less affected by weather conditions than optical remote sensing, as well as the sensitivity to dielectric properties and targets structure, make Synthetic Aperture Radar (SAR), particularly time-series data, a relevant tool for crop processes monitoring. This study aims to benefit from all the amplitude and phase SAR data to perform both a crop classification and a harvest date detection algorithm, supported by the first one for corn and soybean fields. Study area was located in Buenos Aires province, Argentina. To achieve this goal, time-series of Interferometric Coherence (IC) and backscattering values in vertical transmit and vertical receive ((Formula presented.)), and vertical transmit and horizontal receive ((Formula presented.)) polarizations were generated from Single Look Complex images acquired from C-band SAR satellites Sentinel-1A and −1B. The crop classification was performed using a Random Forest classifier with an overall accuracy of 97%. For its training, both (Formula presented.) and (Formula presented.) time-series along the entire crops life cycle were used. Harvest detection algorithm was accomplished by analysing both the IC and (Formula presented.) time-series in an individual way for both crops. IC changes could be linked to plant structure characteristics along their life cycle (from seeding to harvesting), surface structure induced by harvest operations and post-harvest crops stubble. Based on the latter, individual criteria for corn and soybean were adopted. Crop depending on the determination of the harvest date detection was supported by the crop classification obtained. Harvest detection accuracy over 80 fields was superior to 93% for both crops. The proposed methodology for harvest detection is focused on the crops structural characteristics along its life cycle and the post-harvest stubble, which could lead to different IC behaviours.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SAR  
dc.subject
ARGENTINA  
dc.subject
CROP CLASSIFICATION  
dc.subject
REMOTE SENSING  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploiting Sentinel-1 data time-series for crop classification and harvest date detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-29T17:33:27Z  
dc.journal.volume
42  
dc.journal.number
19  
dc.journal.pagination
7313-7331  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Agrimensura. Departamento de Geotopocartografia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Di Leo, Néstor Cristian. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina  
dc.description.fil
Fil: Balbarani, Sebastian. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Agrimensura. Departamento de Geotopocartografia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Cornero, Cecilia. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Agrimensura. Departamento de Geotopocartografia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Pacino, Maria Cristina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Agrimensura. Departamento de Geotopocartografia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
International Journal of Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2021.1957176  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431161.2021.1957176