Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploiting Sentinel-1 data time-series for crop classification and harvest date detection

Amherdt, SebastiánIcon ; Di Leo, Néstor Cristian; Balbarani, SebastianIcon ; Pereira, AyelenIcon ; Cornero, CeciliaIcon ; Pacino, Maria CristinaIcon
Fecha de publicación: 09/2021
Editorial: Taylor & Francis Ltd
Revista: International Journal of Remote Sensing
ISSN: 0143-1161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Light source independence and the advantage of being less affected by weather conditions than optical remote sensing, as well as the sensitivity to dielectric properties and targets structure, make Synthetic Aperture Radar (SAR), particularly time-series data, a relevant tool for crop processes monitoring. This study aims to benefit from all the amplitude and phase SAR data to perform both a crop classification and a harvest date detection algorithm, supported by the first one for corn and soybean fields. Study area was located in Buenos Aires province, Argentina. To achieve this goal, time-series of Interferometric Coherence (IC) and backscattering values in vertical transmit and vertical receive ((Formula presented.)), and vertical transmit and horizontal receive ((Formula presented.)) polarizations were generated from Single Look Complex images acquired from C-band SAR satellites Sentinel-1A and −1B. The crop classification was performed using a Random Forest classifier with an overall accuracy of 97%. For its training, both (Formula presented.) and (Formula presented.) time-series along the entire crops life cycle were used. Harvest detection algorithm was accomplished by analysing both the IC and (Formula presented.) time-series in an individual way for both crops. IC changes could be linked to plant structure characteristics along their life cycle (from seeding to harvesting), surface structure induced by harvest operations and post-harvest crops stubble. Based on the latter, individual criteria for corn and soybean were adopted. Crop depending on the determination of the harvest date detection was supported by the crop classification obtained. Harvest detection accuracy over 80 fields was superior to 93% for both crops. The proposed methodology for harvest detection is focused on the crops structural characteristics along its life cycle and the post-harvest stubble, which could lead to different IC behaviours.
Palabras clave: SAR , ARGENTINA , CROP CLASSIFICATION , REMOTE SENSING
Ver el registro completo
 
Archivos asociados
Tamaño: 9.367Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/167471
DOI: http://dx.doi.org/10.1080/01431161.2021.1957176
URL: https://www.tandfonline.com/doi/full/10.1080/01431161.2021.1957176
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Amherdt, Sebastián; Di Leo, Néstor Cristian; Balbarani, Sebastian; Pereira, Ayelen; Cornero, Cecilia; et al.; Exploiting Sentinel-1 data time-series for crop classification and harvest date detection; Taylor & Francis Ltd; International Journal of Remote Sensing; 42; 19; 9-2021; 7313-7331
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES