Mostrar el registro sencillo del ítem
dc.contributor.author
Neñer, Julian
dc.contributor.author
Laguna, Maria Fabiana
dc.date.available
2022-09-05T17:04:48Z
dc.date.issued
2021-07
dc.identifier.citation
Neñer, Julian; Laguna, Maria Fabiana; Wealth exchange models and machine learning: Finding optimal risk strategies in multiagent economic systems; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 1; 7-2021; 1-7
dc.identifier.issn
2470-0045
dc.identifier.uri
http://hdl.handle.net/11336/167380
dc.description.abstract
The Yard-Sale Model, a well known wealth exchange model whose observed macroscopic behavior hides many underlying aspects of particular complexity, was studied at the microscopic level. The performance of the agents during the successive transactions allows for the definition of successful or disadvantageous strategies according to the profit they achieve at the end of the process. Optimal strategies were found that maximize the individual wealth of each agent by performing their training through a genetic algorithm. The addition of different levels of rationality given by the amount of available information from their environment showed promising results, at both the microscopic and macroscopic levels. Remarkably, after the training process, the rational agents were able to determine when it would be convenient to interact with their opponents. Additionally, a region of parameters was found for which the distribution of wealth is a power law throughout the whole wealth range. As a general result, the incorporation of rational agents in this type of systems leads to greater inequality at the collective level.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ECONOPHYSICS
dc.subject
SOCIOPHYSICS
dc.subject
MODELING
dc.subject
MACHINE LENARNING
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Wealth exchange models and machine learning: Finding optimal risk strategies in multiagent economic systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-09T22:11:03Z
dc.identifier.eissn
2470-0053
dc.journal.volume
104
dc.journal.number
1
dc.journal.pagination
1-7
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Neñer, Julian. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
dc.description.fil
Fil: Laguna, Maria Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.104.014305
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.014305
Archivos asociados