Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Wealth exchange models and machine learning: Finding optimal risk strategies in multiagent economic systems

Neñer, Julian; Laguna, Maria FabianaIcon
Fecha de publicación: 07/2021
Editorial: American Physical Society
Revista: Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN: 2470-0045
e-ISSN: 2470-0053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The Yard-Sale Model, a well known wealth exchange model whose observed macroscopic behavior hides many underlying aspects of particular complexity, was studied at the microscopic level. The performance of the agents during the successive transactions allows for the definition of successful or disadvantageous strategies according to the profit they achieve at the end of the process. Optimal strategies were found that maximize the individual wealth of each agent by performing their training through a genetic algorithm. The addition of different levels of rationality given by the amount of available information from their environment showed promising results, at both the microscopic and macroscopic levels. Remarkably, after the training process, the rational agents were able to determine when it would be convenient to interact with their opponents. Additionally, a region of parameters was found for which the distribution of wealth is a power law throughout the whole wealth range. As a general result, the incorporation of rational agents in this type of systems leads to greater inequality at the collective level.
Palabras clave: ECONOPHYSICS , SOCIOPHYSICS , MODELING , MACHINE LENARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.245Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/167380
DOI: http://dx.doi.org/10.1103/PhysRevE.104.014305
URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.014305
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Neñer, Julian; Laguna, Maria Fabiana; Wealth exchange models and machine learning: Finding optimal risk strategies in multiagent economic systems; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 104; 1; 7-2021; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES