Mostrar el registro sencillo del ítem
dc.contributor.author
Pérez Rodríguez, Michael
dc.contributor.author
Dirchwolf, Pamela Maia
dc.contributor.author
Rodríguez Negrín, Zenaida
dc.contributor.author
Pellerano, Roberto Gerardo
dc.date.available
2022-09-01T15:33:21Z
dc.date.issued
2021-03
dc.identifier.citation
Pérez Rodríguez, Michael; Dirchwolf, Pamela Maia; Rodríguez Negrín, Zenaida; Pellerano, Roberto Gerardo; Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion; Elsevier; Food Chemistry; 339; 3-2021; 1-7
dc.identifier.issn
0308-8146
dc.identifier.uri
http://hdl.handle.net/11336/167201
dc.description.abstract
The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ADULTERATION
dc.subject
LDA
dc.subject
MINERAL PROFILES
dc.subject
PCA BASED DATA FUSION
dc.subject
RICE FLOUR
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-06-10T19:27:05Z
dc.journal.volume
339
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Central Marta Abreu de Las Villas; Cuba
dc.description.fil
Fil: Dirchwolf, Pamela Maia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina
dc.description.fil
Fil: Rodríguez Negrín, Zenaida. Universidad Central Marta Abreu de Las Villas; Cuba
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
dc.journal.title
Food Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814620319877
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.foodchem.2020.128125
Archivos asociados