Mostrar el registro sencillo del ítem

dc.contributor.author
Pérez Rodríguez, Michael  
dc.contributor.author
Dirchwolf, Pamela Maia  
dc.contributor.author
Rodríguez Negrín, Zenaida  
dc.contributor.author
Pellerano, Roberto Gerardo  
dc.date.available
2022-09-01T15:33:21Z  
dc.date.issued
2021-03  
dc.identifier.citation
Pérez Rodríguez, Michael; Dirchwolf, Pamela Maia; Rodríguez Negrín, Zenaida; Pellerano, Roberto Gerardo; Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion; Elsevier; Food Chemistry; 339; 3-2021; 1-7  
dc.identifier.issn
0308-8146  
dc.identifier.uri
http://hdl.handle.net/11336/167201  
dc.description.abstract
The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADULTERATION  
dc.subject
LDA  
dc.subject
MINERAL PROFILES  
dc.subject
PCA BASED DATA FUSION  
dc.subject
RICE FLOUR  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-06-10T19:27:05Z  
dc.journal.volume
339  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Central Marta Abreu de Las Villas; Cuba  
dc.description.fil
Fil: Dirchwolf, Pamela Maia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina  
dc.description.fil
Fil: Rodríguez Negrín, Zenaida. Universidad Central Marta Abreu de Las Villas; Cuba  
dc.description.fil
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina  
dc.journal.title
Food Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814620319877  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.foodchem.2020.128125