Artículo
Fractional convexity
Fecha de publicación:
17/08/2021
Editorial:
Springer
Revista:
Mathematische Annalen
ISSN:
0025-5831
e-ISSN:
1432-1807
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce a notion of fractional convexity that extends naturally the usual notion of convexity in the Euclidean space to a fractional setting. With this notion of fractional convexity, we study the fractional convex envelope inside a domain of an exterior datum (the largest possible fractional convex function inside the domain that is below the datum outside) and show that the fractional convex envelope is characterized as a viscosity solution to a non-local equation that is given by the infimum among all possible directions of the 1-dimensional fractional laplacian. For this equation we prove existence, uniqueness and a comparison principle (in the framework of viscosity solutions). In addition, we find that solutions to the equation for the convex envelope are related to solutions to the fractional Monge–Ampere equation.
Palabras clave:
Fractional convexity
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
del Pezzo, Leandro Martin; Quaas, Alexander; Rossi, Julio Daniel; Fractional convexity; Springer; Mathematische Annalen; 383; 3-4; 17-8-2021; 1687-1719
Compartir
Altmétricas