Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes

Ibanez Barassi, Agustin MarianoIcon ; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; Cardona, Juan F.; Rivera, Rodrigo; Slachevsky, Andrea; Garciá, Adolfo; Bertoux, Maxime; Baez, Sandra
Fecha de publicación: 08/2021
Editorial: IOS Press
Revista: Journal of Alzheimer's Disease
ISSN: 1387-2877
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurociencias

Resumen

Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and Parkinson's disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition+CS), and bvFTD versus AD (71.7%, social cognition+CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses.
Palabras clave: CLASSIFICATION , DEMENTIA , DIAGNOSIS , NEURODEGENERATIVE DISEASES , SOCIAL COGNITION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.022Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166974
DOI: http://dx.doi.org/10.3233/JAD-210163
URL: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad210163
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Ibanez Barassi, Agustin Mariano; Fittipaldi, Sol; Trujillo, Catalina; Jaramillo, Tania; Torres, Alejandra; et al.; Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes; IOS Press; Journal of Alzheimer's Disease; 83; 1; 8-2021; 227-248
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES