Mostrar el registro sencillo del ítem

dc.contributor.author
Mendoza Veirana, Gastón M.  
dc.contributor.author
Perdomo, Santiago  
dc.contributor.author
Ainchil, Jeronimo Enrique  
dc.date.available
2022-08-24T19:27:10Z  
dc.date.issued
2021-11  
dc.identifier.citation
Mendoza Veirana, Gastón M.; Perdomo, Santiago; Ainchil, Jeronimo Enrique; Three-dimensional modelling using spatial regression machine learning and hydrogeological basement VES; Elsevier; Computers & Geosciences; 156; 11-2021; 1-11  
dc.identifier.issn
0098-3004  
dc.identifier.uri
http://hdl.handle.net/11336/166493  
dc.description.abstract
In the last decade, machine learning algorithms have shown their superior performance in the spatial interpolation of environmental properties compared to classical interpolation models. In particular, the random forest ensemble model has provided the best adjustment. In this work, we compare the performance of support vector machines (SVM), simple trees (ST), random forests (RF) and extremely random forests (ERF), using discrete depths obtained by vertical electrical sounding (VES) from the hydrogeological basement of a sedimentary basin in Argentina; the coordinates are not gridded but almost aligned. On the other hand, in different artificial intelligence applications, the ERF algorithm has surpassed several methods of machine learning, including random forests. To the best of our knowledge, we hereby report the first spatial regression application of the novel ERF algorithm, which predicted—even better than RF—values it had not been trained for with an average R2 score of 97.6%. This allowed us to obtain a satisfactory generalization of VES depths in the form of a three-dimensional approximation of the basement. The ERF algorithm also outperformed RF in computation time and smoothness of the surface generated. The primary significance of the results reported here lies in the relative independence that this technique has to offer, considering the area of application and gridding. Added to this, the nature of the method by means of which the discrete data are obtained is independent as well, as these could not only be derived from the VES technique, but also from well data or from different geophysical inversions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXTREMELY RANDOMIZED FOREST  
dc.subject
GEOSTATISTICS  
dc.subject
INTERPOLATION  
dc.subject
INTERSERRANA  
dc.subject
SPATIAL REGRESSION  
dc.subject
VERTICAL ELECTRICAL SOUNDINGS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Three-dimensional modelling using spatial regression machine learning and hydrogeological basement VES  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-23T11:36:58Z  
dc.journal.volume
156  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Mendoza Veirana, Gastón M.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. University of Ghent; Bélgica  
dc.description.fil
Fil: Perdomo, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Ainchil, Jeronimo Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina  
dc.journal.title
Computers & Geosciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098300421001989  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cageo.2021.104907