Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Three-dimensional modelling using spatial regression machine learning and hydrogeological basement VES

Mendoza Veirana, Gastón M.; Perdomo, SantiagoIcon ; Ainchil, Jeronimo Enrique
Fecha de publicación: 11/2021
Editorial: Elsevier
Revista: Computers & Geosciences
ISSN: 0098-3004
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In the last decade, machine learning algorithms have shown their superior performance in the spatial interpolation of environmental properties compared to classical interpolation models. In particular, the random forest ensemble model has provided the best adjustment. In this work, we compare the performance of support vector machines (SVM), simple trees (ST), random forests (RF) and extremely random forests (ERF), using discrete depths obtained by vertical electrical sounding (VES) from the hydrogeological basement of a sedimentary basin in Argentina; the coordinates are not gridded but almost aligned. On the other hand, in different artificial intelligence applications, the ERF algorithm has surpassed several methods of machine learning, including random forests. To the best of our knowledge, we hereby report the first spatial regression application of the novel ERF algorithm, which predicted—even better than RF—values it had not been trained for with an average R2 score of 97.6%. This allowed us to obtain a satisfactory generalization of VES depths in the form of a three-dimensional approximation of the basement. The ERF algorithm also outperformed RF in computation time and smoothness of the surface generated. The primary significance of the results reported here lies in the relative independence that this technique has to offer, considering the area of application and gridding. Added to this, the nature of the method by means of which the discrete data are obtained is independent as well, as these could not only be derived from the VES technique, but also from well data or from different geophysical inversions.
Palabras clave: EXTREMELY RANDOMIZED FOREST , GEOSTATISTICS , INTERPOLATION , INTERSERRANA , SPATIAL REGRESSION , VERTICAL ELECTRICAL SOUNDINGS
Ver el registro completo
 
Archivos asociados
Tamaño: 7.124Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166493
URL: https://www.sciencedirect.com/science/article/pii/S0098300421001989
DOI: http://dx.doi.org/10.1016/j.cageo.2021.104907
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Mendoza Veirana, Gastón M.; Perdomo, Santiago; Ainchil, Jeronimo Enrique; Three-dimensional modelling using spatial regression machine learning and hydrogeological basement VES; Elsevier; Computers & Geosciences; 156; 11-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES