Mostrar el registro sencillo del ítem
dc.contributor.author
Rajngewerc, Mariela

dc.contributor.author
Grimson, Rafael

dc.contributor.author
Bali, Juan Lucas

dc.contributor.author
Minotti, Priscila

dc.contributor.author
Kandus, Patricia

dc.date.available
2022-08-22T19:49:06Z
dc.date.issued
2021-08-19
dc.identifier.citation
Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia; Land-cover classification using freely available multitemporal sar data (work in progress); Copernicus Publications; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 46; 4/W2-2021; 19-8-2021; 133-138
dc.identifier.issn
1682-1750
dc.identifier.uri
http://hdl.handle.net/11336/166283
dc.description.abstract
Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Copernicus Publications

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CLASSIFICATION
dc.subject
GLCM
dc.subject
SAR
dc.subject
SENTINEL-1
dc.subject
TEXTURES
dc.subject
WETLANDS
dc.subject.classification
Otras Ciencias Naturales y Exactas

dc.subject.classification
Otras Ciencias Naturales y Exactas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Land-cover classification using freely available multitemporal sar data (work in progress)
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-18T15:53:26Z
dc.identifier.eissn
2194-9034
dc.journal.volume
46
dc.journal.number
4/W2-2021
dc.journal.pagination
133-138
dc.journal.pais
Alemania

dc.journal.ciudad
Göttingen
dc.description.fil
Fil: Rajngewerc, Mariela. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
dc.description.fil
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
dc.description.fil
Fil: Bali, Juan Lucas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Minotti, Priscila. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina
dc.description.fil
Fil: Kandus, Patricia. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina
dc.journal.title
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/133/2021/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-133-2021
Archivos asociados