Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Land-cover classification using freely available multitemporal sar data (work in progress)

Rajngewerc, MarielaIcon ; Grimson, RafaelIcon ; Bali, Juan LucasIcon ; Minotti, Priscila; Kandus, Patricia
Fecha de publicación: 19/08/2021
Editorial: Copernicus Publications
Revista: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN: 1682-1750
e-ISSN: 2194-9034
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information.
Palabras clave: CLASSIFICATION , GLCM , SAR , SENTINEL-1 , TEXTURES , WETLANDS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.038Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/166283
URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/1
DOI: http://dx.doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-133-2021
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia; Land-cover classification using freely available multitemporal sar data (work in progress); Copernicus Publications; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 46; 4/W2-2021; 19-8-2021; 133-138
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES