Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez Prado, Santiago  
dc.contributor.author
Hernández, Fernando  
dc.contributor.author
Achilli, Ana Laura  
dc.contributor.author
Amelong, Agustina  
dc.contributor.other
Torkamaneh, Davoud  
dc.contributor.other
Belzile, François  
dc.date.available
2022-08-17T12:48:20Z  
dc.date.issued
2022  
dc.identifier.citation
Alvarez Prado, Santiago; Hernández, Fernando; Achilli, Ana Laura; Amelong, Agustina; Preparation and Curation of Phenotypic Datasets; Springer Nature Switzerland AG; 2022; 13-27  
dc.identifier.isbn
978-1-0716-2237-7  
dc.identifier.uri
http://hdl.handle.net/11336/165763  
dc.description.abstract
Based on case studies, in this chapter we discuss the extent to which the number and identity of quantitative trait loci (QTL) identified from genome-wide association studies (GWAS) are affected by curation and analysis of phenotypic data. The chapter demonstrates through examples the impact of (1) cleaning of outliers, and of (2) the choice of statistical method for estimating genotypic mean values of phenotypic inputs in GWAS. No cleaning of outliers resulted in the highest number of dubious QTL, especially at loci with highly unbalanced allelic frequencies. A trade-off was identified between the risk of false positives and the risk of missing interesting, yet rare alleles. The choice of the statistical method to estimate genotypic mean values also affected the output of GWAS analysis, with reduced QTL overlap between methods. Using mixed models that capture spatial trends, among other features, increased the narrow-sense heritability of traits, the number of identified QTL and the overall power of GWAS analysis. Cleaning and choosing robust statistical models for estimating genotypic mean values should be included in GWAS pipelines to decrease both false positive and false negative rates of QTL detection.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.relation
https://www.springer.com/series/7651  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OUTLIERS  
dc.subject
STATISTICAL MODELS  
dc.subject
FALSE QTL  
dc.subject
STATISTICAL POWER  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Preparation and Curation of Phenotypic Datasets  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2022-07-04T19:15:54Z  
dc.journal.pagination
13-27  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Alvarez Prado, Santiago. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Hernández, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina  
dc.description.fil
Fil: Achilli, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina  
dc.description.fil
Fil: Amelong, Agustina. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-1-0716-2237-7_2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/protocol/10.1007/978-1-0716-2237-7_2  
dc.conicet.paginas
371  
dc.source.titulo
Genome-Wide Association Studies