Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Preparation and Curation of Phenotypic Datasets

Título del libro: Genome-Wide Association Studies

Alvarez Prado, SantiagoIcon ; Hernández, FernandoIcon ; Achilli, Ana LauraIcon ; Amelong, AgustinaIcon
Otros responsables: Torkamaneh, Davoud; Belzile, François
Fecha de publicación: 2022
Editorial: Springer Nature Switzerland AG
ISBN: 978-1-0716-2237-7
Idioma: Inglés
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Based on case studies, in this chapter we discuss the extent to which the number and identity of quantitative trait loci (QTL) identified from genome-wide association studies (GWAS) are affected by curation and analysis of phenotypic data. The chapter demonstrates through examples the impact of (1) cleaning of outliers, and of (2) the choice of statistical method for estimating genotypic mean values of phenotypic inputs in GWAS. No cleaning of outliers resulted in the highest number of dubious QTL, especially at loci with highly unbalanced allelic frequencies. A trade-off was identified between the risk of false positives and the risk of missing interesting, yet rare alleles. The choice of the statistical method to estimate genotypic mean values also affected the output of GWAS analysis, with reduced QTL overlap between methods. Using mixed models that capture spatial trends, among other features, increased the narrow-sense heritability of traits, the number of identified QTL and the overall power of GWAS analysis. Cleaning and choosing robust statistical models for estimating genotypic mean values should be included in GWAS pipelines to decrease both false positive and false negative rates of QTL detection.
Palabras clave: OUTLIERS , STATISTICAL MODELS , FALSE QTL , STATISTICAL POWER
Ver el registro completo
 
Archivos asociados
Tamaño: 568.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/165763
DOI: https://doi.org/10.1007/978-1-0716-2237-7_2
URL: https://link.springer.com/protocol/10.1007/978-1-0716-2237-7_2
Colecciones
Capítulos de libros(CERZOS)
Capítulos de libros de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Citación
Alvarez Prado, Santiago; Hernández, Fernando; Achilli, Ana Laura; Amelong, Agustina; Preparation and Curation of Phenotypic Datasets; Springer Nature Switzerland AG; 2022; 13-27
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 16
Descargas: 0

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES