Mostrar el registro sencillo del ítem

dc.contributor.author
Botbol, Nicolas Santiago  
dc.date.available
2017-05-16T18:05:34Z  
dc.date.issued
2010-05  
dc.identifier.citation
Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068  
dc.identifier.issn
0022-4049  
dc.identifier.uri
http://hdl.handle.net/11336/16543  
dc.description.abstract
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Rational Maps  
dc.subject
Implicitization  
dc.subject
Syzygies  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Compactifications of rational maps, and the implicit equations of their images  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-15T21:08:18Z  
dc.journal.volume
215  
dc.journal.number
5  
dc.journal.pagination
1053-1068  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Pure And Applied Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpaa.2010.07.010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404910001647?via%3Dihub