Artículo
Compactifications of rational maps, and the implicit equations of their images
Fecha de publicación:
05/2010
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).
Palabras clave:
Rational Maps
,
Implicitization
,
Syzygies
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068
Compartir
Altmétricas