Mostrar el registro sencillo del ítem

dc.contributor.author
Ojea, Ignacio  
dc.date.available
2022-08-10T13:57:15Z  
dc.date.issued
2021-08  
dc.identifier.citation
Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907  
dc.identifier.issn
0764-583X  
dc.identifier.uri
http://hdl.handle.net/11336/164931  
dc.description.abstract
We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
A PRIORI ERROR ESTIMATES  
dc.subject
FINITE ELEMENTS  
dc.subject
WEIGHTED SOBOLEV SPACES  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:20:33Z  
dc.identifier.eissn
2804-7214  
dc.journal.volume
55  
dc.journal.pagination
S879-S907  
dc.journal.pais
Francia  
dc.journal.ciudad
Les Ulis  
dc.description.fil
Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/m2an/2020065  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an190167/m2an190167.html