Mostrar el registro sencillo del ítem
dc.contributor.author
Ojea, Ignacio
dc.date.available
2022-08-10T13:57:15Z
dc.date.issued
2021-08
dc.identifier.citation
Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907
dc.identifier.issn
0764-583X
dc.identifier.uri
http://hdl.handle.net/11336/164931
dc.description.abstract
We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
EDP Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
A PRIORI ERROR ESTIMATES
dc.subject
FINITE ELEMENTS
dc.subject
WEIGHTED SOBOLEV SPACES
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-28T14:20:33Z
dc.identifier.eissn
2804-7214
dc.journal.volume
55
dc.journal.pagination
S879-S907
dc.journal.pais
Francia
dc.journal.ciudad
Les Ulis
dc.description.fil
Fil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/m2an/2020065
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an190167/m2an190167.html
Archivos asociados