Artículo
Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources
Fecha de publicación:
08/2021
Editorial:
EDP Sciences
Revista:
Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique
ISSN:
0764-583X
e-ISSN:
2804-7214
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the problem -Δu=f, where f has a point-singularity. In particular, we are interested in f = δx0, a Dirac delta with support in x0, but singularities of the form f|x - x0|-s are also considered. We prove the stability of the Galerkin projection on graded meshes in weighted spaces, with weights given by powers of the distance to x0. We also recover optimal rates of convergence for the finite element method on these graded meshes. Our approach is general and holds both in two and three dimensions. Numerical experiments are shown that verify our results, and lead to interesting observations.
Palabras clave:
A PRIORI ERROR ESTIMATES
,
FINITE ELEMENTS
,
WEIGHTED SOBOLEV SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ojea, Ignacio; Optimal a priori error estimates in weighted Sobolev spaces for the Poisson problem with singular sources; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 8-2021; S879-S907
Compartir
Altmétricas