Mostrar el registro sencillo del ítem
dc.contributor.author
Vasco, Mónica Palomino
dc.contributor.author
Mora Díez, Nielene M.
dc.contributor.author
Rodríguez Cáceres, María I.
dc.contributor.author
Acedo Valenzuela, María I.
dc.contributor.author
Alcaraz, Mirta Raquel
dc.contributor.author
Goicoechea, Hector Casimiro
dc.date.available
2022-08-09T17:50:08Z
dc.date.issued
2021-01
dc.identifier.citation
Vasco, Mónica Palomino; Mora Díez, Nielene M.; Rodríguez Cáceres, María I.; Acedo Valenzuela, María I.; Alcaraz, Mirta Raquel; et al.; Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study; Elsevier Science; Analytica Chimica Acta; 1141; 1-2021; 63-70
dc.identifier.issn
0003-2670
dc.identifier.uri
http://hdl.handle.net/11336/164795
dc.description.abstract
Second-order based calibration methods have been widely investigated capitalizing on the inherent benefits of the data structure and the decomposition models, demonstrating that second-order advantage is a property that conspires to a high likelihood success in the resolution of systems of varying complexity. This work aims to demonstrate the applicability of a combined chemometric strategy to solve non-linear multivariate calibration systems in the presence of non-multilinear multi-way data. The determination of histamine by differential pulse voltammetry at different pH is presented as case study. The experimental system has the outstanding difficulty arisen from the large displacement along the potential axis by the pH, which was successfully overcome by implementation of the presented combined strategy. For data modeling, MCR-ALS, U-PLS/RBL and U-PCA/RBL-RBF were used. MCR-ALS allowed unraveling the non-linear behavior between the signal and the concentration, and extracting the underlying profiles of the constituent. Quantitative analysis was performed through the three models, and a comparative evaluation of the predictive performance was done. The best results were achieved with U-PCA/RBL-RBF (mean recovery = 101%) whereas, MCR-ALS yield the lowest mean recovery for all samples (70%).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANNS
dc.subject
MCR-ALS
dc.subject
NON-LINEAR REGRESSION MODEL
dc.subject
NON-TRILINEAR TYPE 3 DATA
dc.subject
PH-VOLTAMMETRY
dc.subject
U-PLS/RBL
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-08T15:17:56Z
dc.journal.volume
1141
dc.journal.pagination
63-70
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Vasco, Mónica Palomino. Universidad de Extremadura; España
dc.description.fil
Fil: Mora Díez, Nielene M.. Universidad de Extremadura; España
dc.description.fil
Fil: Rodríguez Cáceres, María I.. Universidad de Extremadura; España
dc.description.fil
Fil: Acedo Valenzuela, María I.. Universidad de Extremadura; España
dc.description.fil
Fil: Alcaraz, Mirta Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
dc.journal.title
Analytica Chimica Acta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S000326702031059X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aca.2020.10.039
Archivos asociados