Mostrar el registro sencillo del ítem

dc.contributor.author
Vasco, Mónica Palomino  
dc.contributor.author
Mora Díez, Nielene M.  
dc.contributor.author
Rodríguez Cáceres, María I.  
dc.contributor.author
Acedo Valenzuela, María I.  
dc.contributor.author
Alcaraz, Mirta Raquel  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.date.available
2022-08-09T17:50:08Z  
dc.date.issued
2021-01  
dc.identifier.citation
Vasco, Mónica Palomino; Mora Díez, Nielene M.; Rodríguez Cáceres, María I.; Acedo Valenzuela, María I.; Alcaraz, Mirta Raquel; et al.; Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study; Elsevier Science; Analytica Chimica Acta; 1141; 1-2021; 63-70  
dc.identifier.issn
0003-2670  
dc.identifier.uri
http://hdl.handle.net/11336/164795  
dc.description.abstract
Second-order based calibration methods have been widely investigated capitalizing on the inherent benefits of the data structure and the decomposition models, demonstrating that second-order advantage is a property that conspires to a high likelihood success in the resolution of systems of varying complexity. This work aims to demonstrate the applicability of a combined chemometric strategy to solve non-linear multivariate calibration systems in the presence of non-multilinear multi-way data. The determination of histamine by differential pulse voltammetry at different pH is presented as case study. The experimental system has the outstanding difficulty arisen from the large displacement along the potential axis by the pH, which was successfully overcome by implementation of the presented combined strategy. For data modeling, MCR-ALS, U-PLS/RBL and U-PCA/RBL-RBF were used. MCR-ALS allowed unraveling the non-linear behavior between the signal and the concentration, and extracting the underlying profiles of the constituent. Quantitative analysis was performed through the three models, and a comparative evaluation of the predictive performance was done. The best results were achieved with U-PCA/RBL-RBF (mean recovery = 101%) whereas, MCR-ALS yield the lowest mean recovery for all samples (70%).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANNS  
dc.subject
MCR-ALS  
dc.subject
NON-LINEAR REGRESSION MODEL  
dc.subject
NON-TRILINEAR TYPE 3 DATA  
dc.subject
PH-VOLTAMMETRY  
dc.subject
U-PLS/RBL  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-08T15:17:56Z  
dc.journal.volume
1141  
dc.journal.pagination
63-70  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Vasco, Mónica Palomino. Universidad de Extremadura; España  
dc.description.fil
Fil: Mora Díez, Nielene M.. Universidad de Extremadura; España  
dc.description.fil
Fil: Rodríguez Cáceres, María I.. Universidad de Extremadura; España  
dc.description.fil
Fil: Acedo Valenzuela, María I.. Universidad de Extremadura; España  
dc.description.fil
Fil: Alcaraz, Mirta Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina  
dc.journal.title
Analytica Chimica Acta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S000326702031059X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aca.2020.10.039