Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study

Vasco, Mónica Palomino; Mora Díez, Nielene M.; Rodríguez Cáceres, María I.; Acedo Valenzuela, María I.; Alcaraz, Mirta RaquelIcon ; Goicoechea, Hector CasimiroIcon
Fecha de publicación: 01/2021
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Second-order based calibration methods have been widely investigated capitalizing on the inherent benefits of the data structure and the decomposition models, demonstrating that second-order advantage is a property that conspires to a high likelihood success in the resolution of systems of varying complexity. This work aims to demonstrate the applicability of a combined chemometric strategy to solve non-linear multivariate calibration systems in the presence of non-multilinear multi-way data. The determination of histamine by differential pulse voltammetry at different pH is presented as case study. The experimental system has the outstanding difficulty arisen from the large displacement along the potential axis by the pH, which was successfully overcome by implementation of the presented combined strategy. For data modeling, MCR-ALS, U-PLS/RBL and U-PCA/RBL-RBF were used. MCR-ALS allowed unraveling the non-linear behavior between the signal and the concentration, and extracting the underlying profiles of the constituent. Quantitative analysis was performed through the three models, and a comparative evaluation of the predictive performance was done. The best results were achieved with U-PCA/RBL-RBF (mean recovery = 101%) whereas, MCR-ALS yield the lowest mean recovery for all samples (70%).
Palabras clave: ANNS , MCR-ALS , NON-LINEAR REGRESSION MODEL , NON-TRILINEAR TYPE 3 DATA , PH-VOLTAMMETRY , U-PLS/RBL
Ver el registro completo
 
Archivos asociados
Tamaño: 6.033Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/164795
URL: https://linkinghub.elsevier.com/retrieve/pii/S000326702031059X
DOI: https://doi.org/10.1016/j.aca.2020.10.039
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Vasco, Mónica Palomino; Mora Díez, Nielene M.; Rodríguez Cáceres, María I.; Acedo Valenzuela, María I.; Alcaraz, Mirta Raquel; et al.; Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes: a case study; Elsevier Science; Analytica Chimica Acta; 1141; 1-2021; 63-70
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES