Mostrar el registro sencillo del ítem

dc.contributor.author
Marmolejo, Francisco  
dc.contributor.author
Menni, Matías  
dc.date.available
2022-08-09T10:55:16Z  
dc.date.issued
2021-10  
dc.identifier.citation
Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-279  
dc.identifier.issn
1201-561X  
dc.identifier.uri
http://hdl.handle.net/11336/164666  
dc.description.abstract
We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Theory And Applications Of Categories  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Topos Theory  
dc.subject
Axiomatic Cohesion  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The canonical intensive quality of a cohesive topos  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-03T18:11:11Z  
dc.journal.volume
36  
dc.journal.number
9  
dc.journal.pagination
250-279  
dc.journal.pais
Canadá  
dc.description.fil
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Theory And Applications Of Categories  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/36/9/36-09abs.html