Mostrar el registro sencillo del ítem
dc.contributor.author
Marmolejo, Francisco
dc.contributor.author
Menni, Matías
dc.date.available
2022-08-09T10:55:16Z
dc.date.issued
2021-10
dc.identifier.citation
Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-279
dc.identifier.issn
1201-561X
dc.identifier.uri
http://hdl.handle.net/11336/164666
dc.description.abstract
We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Theory And Applications Of Categories
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Topos Theory
dc.subject
Axiomatic Cohesion
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The canonical intensive quality of a cohesive topos
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-03T18:11:11Z
dc.journal.volume
36
dc.journal.number
9
dc.journal.pagination
250-279
dc.journal.pais
Canadá
dc.description.fil
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Theory And Applications Of Categories
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/36/9/36-09abs.html
Archivos asociados