Artículo
The canonical intensive quality of a cohesive topos
Fecha de publicación:
10/2021
Editorial:
Theory And Applications Of Categories
Revista:
Theory And Applications Of Categories
ISSN:
1201-561X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We strengthen a result of Lawvere by proving that every pre-cohesive geometric morphism p: E --> S has a canonical intensive quality s: E --> L. We also discuss examples among bounded pre-cohesive p: E --> S and, in particular, we show that if E is a presheaf topos then so is L.This result lifts to Grothendieck toposes but the sites obtained need not be subcanonical.To illustrate this phenomenon, and also the subtle passage from E to L,we consider a particular family of bounded cohesive toposes over Set and build subcanonical sites fortheir associated categories L.
Palabras clave:
Topos Theory
,
Axiomatic Cohesion
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Marmolejo, Francisco; Menni, Matías; The canonical intensive quality of a cohesive topos; Theory And Applications Of Categories; Theory And Applications Of Categories; 36; 9; 10-2021; 250-279
Compartir