Mostrar el registro sencillo del ítem

dc.contributor.author
Biocca, Nicolás  
dc.contributor.author
Blanco, Pablo Javier  
dc.contributor.author
Caballero, Daniel  
dc.contributor.author
Gimenez, Juan Manuel  
dc.contributor.author
Carr, Gustavo Eduardo  
dc.contributor.author
Urquiza, Santiago Adrian  
dc.date.available
2022-08-04T11:54:49Z  
dc.date.issued
2021-10  
dc.identifier.citation
Biocca, Nicolás; Blanco, Pablo Javier; Caballero, Daniel; Gimenez, Juan Manuel; Carr, Gustavo Eduardo; et al.; A biologically-inspired mesh optimizer based on pseudo-material remodeling; Springer; Computational Mechanics; 69; 2; 10-2021; 505-525  
dc.identifier.issn
0178-7675  
dc.identifier.uri
http://hdl.handle.net/11336/164157  
dc.description.abstract
Moving boundaries and interfaces are commonly encountered in fluid flow simulations. For instance, fluid-structure interaction simulations require the formulation of the problem in moving domains, making the mesh distortion an issue of concern towards ensuring the accuracy of numerical model predictions. In this work, we propose a technique for the simultaneous mesh optimization and motion characterization. The mesh optimization/motion method introduced here is inspired by the mechanobiology of soft tissues, particularly those present in arterial walls, which feature an incredible capability to adapt to altered mechanical stimuli through adaptive mechanisms such as growth and remodeling. The proposed approach is in the framework of a low-distortion mesh moving method that is based on fiber-reinforced hyperelasticity and optimized zero-stress state. We adopt different reference configurations for the different constituents, namely ground substance and fibers. Hypothetical reference configurations are postulated for the different pieces of pseudo-material (the elements) as target shapes. Also, we modify the equilibrium equations using a volume-invariant strategy. Through the introduction of growth and remodeling adaptive processes we build an optimization algorithm which can attain an optimal configuration through a series of consecutive nonlinear optimizations steps. The remodeling mechanism allows to adapt the fiber deposition orientations, which become the driving force towards an homeostatic state, that is the optimal configuration. Also, a recruitment mechanism is introduced to selectively deal with initial highly distorted elements where high stresses develop due to the departure from the ideal configuration. We report 2D and 3D numerical experiments to show the application of this biologically-inspired mesh optimizer (BIMO) to simplicial finite element meshes. We also present additional numerical tests using BIMO as a mesh moving method. The results show that the proposed method performs satisfactorily, either as mesh optimizer and/or mesh motion strategy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FIBER RECRUITMENT  
dc.subject
FIBER-REINFORCED HYPERELASTICITY  
dc.subject
GROWTH AND REMODELING  
dc.subject
MECHANOBIOLOGY  
dc.subject
MESH MOTION  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A biologically-inspired mesh optimizer based on pseudo-material remodeling  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-02T17:24:28Z  
dc.journal.volume
69  
dc.journal.number
2  
dc.journal.pagination
505-525  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Biocca, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina  
dc.description.fil
Fil: Blanco, Pablo Javier. National Laboratory For Scientific Computing (lncc); Brasil. National Institute Of Science And Technology In Medicin; Brasil  
dc.description.fil
Fil: Caballero, Daniel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Gimenez, Juan Manuel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Carr, Gustavo Eduardo. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Urquiza, Santiago Adrian. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina  
dc.journal.title
Computational Mechanics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00466-021-02101-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00466-021-02101-6