Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A biologically-inspired mesh optimizer based on pseudo-material remodeling

Biocca, NicolásIcon ; Blanco, Pablo Javier; Caballero, DanielIcon ; Gimenez, Juan ManuelIcon ; Carr, Gustavo EduardoIcon ; Urquiza, Santiago Adrian
Fecha de publicación: 10/2021
Editorial: Springer
Revista: Computational Mechanics
ISSN: 0178-7675
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

Moving boundaries and interfaces are commonly encountered in fluid flow simulations. For instance, fluid-structure interaction simulations require the formulation of the problem in moving domains, making the mesh distortion an issue of concern towards ensuring the accuracy of numerical model predictions. In this work, we propose a technique for the simultaneous mesh optimization and motion characterization. The mesh optimization/motion method introduced here is inspired by the mechanobiology of soft tissues, particularly those present in arterial walls, which feature an incredible capability to adapt to altered mechanical stimuli through adaptive mechanisms such as growth and remodeling. The proposed approach is in the framework of a low-distortion mesh moving method that is based on fiber-reinforced hyperelasticity and optimized zero-stress state. We adopt different reference configurations for the different constituents, namely ground substance and fibers. Hypothetical reference configurations are postulated for the different pieces of pseudo-material (the elements) as target shapes. Also, we modify the equilibrium equations using a volume-invariant strategy. Through the introduction of growth and remodeling adaptive processes we build an optimization algorithm which can attain an optimal configuration through a series of consecutive nonlinear optimizations steps. The remodeling mechanism allows to adapt the fiber deposition orientations, which become the driving force towards an homeostatic state, that is the optimal configuration. Also, a recruitment mechanism is introduced to selectively deal with initial highly distorted elements where high stresses develop due to the departure from the ideal configuration. We report 2D and 3D numerical experiments to show the application of this biologically-inspired mesh optimizer (BIMO) to simplicial finite element meshes. We also present additional numerical tests using BIMO as a mesh moving method. The results show that the proposed method performs satisfactorily, either as mesh optimizer and/or mesh motion strategy.
Palabras clave: FIBER RECRUITMENT , FIBER-REINFORCED HYPERELASTICITY , GROWTH AND REMODELING , MECHANOBIOLOGY , MESH MOTION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.733Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/164157
URL: https://link.springer.com/10.1007/s00466-021-02101-6
DOI: http://dx.doi.org/10.1007/s00466-021-02101-6
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Biocca, Nicolás; Blanco, Pablo Javier; Caballero, Daniel; Gimenez, Juan Manuel; Carr, Gustavo Eduardo; et al.; A biologically-inspired mesh optimizer based on pseudo-material remodeling; Springer; Computational Mechanics; 69; 2; 10-2021; 505-525
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES