Mostrar el registro sencillo del ítem
dc.contributor.author
Ovando, Gabriela Paola
dc.date.available
2022-08-03T17:48:48Z
dc.date.issued
2021-09
dc.identifier.citation
Ovando, Gabriela Paola; The geodesic flow on nilpotent lie groups of steps two and three; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 1; 9-2021; 327-352
dc.identifier.issn
1078-0947
dc.identifier.uri
http://hdl.handle.net/11336/164093
dc.description.abstract
The goal of this paper is the study of the integrability of the geodesic flow on k-step nilpotent Lie groups, k=2,3, when equipped with a leftinvariant metric. Liouville integrability is proved in low dimensions. Moreover, it is shown that complete families of first integrals can be constructed with Killing vector fields and symmetric Killing 2-tensor fields. This holds for dimension m ≤ 5. The situation in dimension six is similar in most cases. Several algebraic relations on the Lie algebra of first integrals are explicitly written. Also invariant first integrals are analyzed and several involution conditions are shown.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Mathematical Sciences
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FIRST INTEGRALS
dc.subject
GEODESIC FLOW
dc.subject
KILLING TENSOR FIELDS
dc.subject
LIOUVILLE INTEGRABILITY
dc.subject
NILPOTENT LIE GROUPS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The geodesic flow on nilpotent lie groups of steps two and three
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-02T18:16:06Z
dc.journal.volume
42
dc.journal.number
1
dc.journal.pagination
327-352
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Springfield
dc.description.fil
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Discrete And Continuous Dynamical Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2021119
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2021119
Archivos asociados