Artículo
The geodesic flow on nilpotent lie groups of steps two and three
Fecha de publicación:
09/2021
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The goal of this paper is the study of the integrability of the geodesic flow on k-step nilpotent Lie groups, k=2,3, when equipped with a leftinvariant metric. Liouville integrability is proved in low dimensions. Moreover, it is shown that complete families of first integrals can be constructed with Killing vector fields and symmetric Killing 2-tensor fields. This holds for dimension m ≤ 5. The situation in dimension six is similar in most cases. Several algebraic relations on the Lie algebra of first integrals are explicitly written. Also invariant first integrals are analyzed and several involution conditions are shown.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Ovando, Gabriela Paola; The geodesic flow on nilpotent lie groups of steps two and three; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 1; 9-2021; 327-352
Compartir
Altmétricas