Mostrar el registro sencillo del ítem
dc.contributor.author
Córdoba, Mariano

dc.contributor.author
Balzarini, Monica Graciela

dc.date.available
2022-08-01T14:06:42Z
dc.date.issued
2021-05
dc.identifier.citation
Córdoba, Mariano; Balzarini, Monica Graciela; A random forest-based algorithm for data-intensive spatial interpolation in crop yield mapping; Elsevier; Computers and Eletronics in Agriculture; 184; 5-2021; 1-9
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/163666
dc.description.abstract
High-resolution yield maps are an essential tool in modern agriculture. Using spatial interpolation, spatially discrete sampled yield data from yield monitors can be transformed into continuous yield maps. However, spatial interpolation is usually performed using methods that can be computationally demanding or that lack credibility measurements. The objectives of this work were to improve and evaluate a spatial machine learning algorithm for yield mapping at a fine scale. The core method used for mapping is Quantile Regression Forest Spatial Interpolation (QRFI), in which covariates from the spatial neighborhood of the sampled yields are used to predict yields at unsampled sites. To assess the algorithm performance, more than one thousand yield monitor datasets from several plant species were processed with QRFI, and other geostatistical (ordinary kriging, KG) and non-geostatistical (spatial inverse distance interpolation, IDW) methods. We illustrated the application of QRFI for yield mapping using yield monitor datasets of different grain crops from the Argentine Pampas. Evaluation of the methods showed that all statistical metrics suggested better results for yield maps obtained by QRFI than by KG or IDW. Globally, prediction error of QRFI was 11.5%, which was on average at least 16% better than the corresponding results of the other spatial interpolation methods. The machine learning algorithm QRFI can be successfully applied to perform spatial interpolation of yields at the field scale and to assess the associated prediction uncertainty.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PREDICTION ERROR
dc.subject
QUANTILE REGRESSION FOREST
dc.subject
SPATIAL INTERPOLATION
dc.subject
YIELD MONITOR
dc.subject.classification
Agricultura

dc.subject.classification
Agricultura, Silvicultura y Pesca

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
A random forest-based algorithm for data-intensive spatial interpolation in crop yield mapping
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-26T17:35:58Z
dc.journal.volume
184
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Córdoba, Mariano. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Balzarini, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Area de Estadística y Biometría; Argentina
dc.journal.title
Computers and Eletronics in Agriculture

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.compag.2021.106094
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168169921001125
Archivos asociados