Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A random forest-based algorithm for data-intensive spatial interpolation in crop yield mapping

Córdoba, MarianoIcon ; Balzarini, Monica GracielaIcon
Fecha de publicación: 05/2021
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

High-resolution yield maps are an essential tool in modern agriculture. Using spatial interpolation, spatially discrete sampled yield data from yield monitors can be transformed into continuous yield maps. However, spatial interpolation is usually performed using methods that can be computationally demanding or that lack credibility measurements. The objectives of this work were to improve and evaluate a spatial machine learning algorithm for yield mapping at a fine scale. The core method used for mapping is Quantile Regression Forest Spatial Interpolation (QRFI), in which covariates from the spatial neighborhood of the sampled yields are used to predict yields at unsampled sites. To assess the algorithm performance, more than one thousand yield monitor datasets from several plant species were processed with QRFI, and other geostatistical (ordinary kriging, KG) and non-geostatistical (spatial inverse distance interpolation, IDW) methods. We illustrated the application of QRFI for yield mapping using yield monitor datasets of different grain crops from the Argentine Pampas. Evaluation of the methods showed that all statistical metrics suggested better results for yield maps obtained by QRFI than by KG or IDW. Globally, prediction error of QRFI was 11.5%, which was on average at least 16% better than the corresponding results of the other spatial interpolation methods. The machine learning algorithm QRFI can be successfully applied to perform spatial interpolation of yields at the field scale and to assess the associated prediction uncertainty.
Palabras clave: PREDICTION ERROR , QUANTILE REGRESSION FOREST , SPATIAL INTERPOLATION , YIELD MONITOR
Ver el registro completo
 
Archivos asociados
Tamaño: 6.555Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/163666
DOI: https://doi.org/10.1016/j.compag.2021.106094
URL: https://www.sciencedirect.com/science/article/pii/S0168169921001125
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Citación
Córdoba, Mariano; Balzarini, Monica Graciela; A random forest-based algorithm for data-intensive spatial interpolation in crop yield mapping; Elsevier; Computers and Eletronics in Agriculture; 184; 5-2021; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES