Mostrar el registro sencillo del ítem
dc.contributor.author
Wang, Yakun
dc.contributor.author
Shi, Liangsheng
dc.contributor.author
Lin, Lin
dc.contributor.author
Holzman, Mauro Ezequiel
dc.contributor.author
Carmona, Facundo
dc.contributor.author
Zhang, Qiuru
dc.date.available
2022-07-28T15:40:54Z
dc.date.issued
2020-05
dc.identifier.citation
Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; et al.; A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning; Soil Science Society of America; Vadose Zone Journal; 19; 1; 5-2020; 1-18
dc.identifier.issn
1539-1663
dc.identifier.uri
http://hdl.handle.net/11336/163420
dc.description.abstract
As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Soil Science Society of America
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
soil moisture
dc.subject
machine learning
dc.subject.classification
Oceanografía, Hidrología, Recursos Hídricos
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T14:36:14Z
dc.journal.volume
19
dc.journal.number
1
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Wisconsin
dc.description.fil
Fil: Wang, Yakun. Wuhan University; China
dc.description.fil
Fil: Shi, Liangsheng. Wuhan University; China
dc.description.fil
Fil: Lin, Lin. Wuhan University; China
dc.description.fil
Fil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
dc.description.fil
Fil: Carmona, Facundo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
dc.description.fil
Fil: Zhang, Qiuru. Wuhan University; China
dc.journal.title
Vadose Zone Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/vzj2.20026
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/vzj2.20026
Archivos asociados