Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning

Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro EzequielIcon ; Carmona, FacundoIcon ; Zhang, Qiuru
Fecha de publicación: 05/2020
Editorial: Soil Science Society of America
Revista: Vadose Zone Journal
ISSN: 1539-1663
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Oceanografía, Hidrología, Recursos Hídricos

Resumen

As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment.
Palabras clave: soil moisture , machine learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.819Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/163420
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/vzj2.20026
DOI: http://dx.doi.org/10.1002/vzj2.20026
Colecciones
Articulos (IHLLA)
Articulos de INSTITUTO DE HIDROLOGIA DE LLANURAS "DR. EDUARDO JORGE USUNOFF"
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; et al.; A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning; Soil Science Society of America; Vadose Zone Journal; 19; 1; 5-2020; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES