Mostrar el registro sencillo del ítem
dc.contributor.author
Acosta, Julián
dc.contributor.author
Grimaldi, Francisco
dc.contributor.author
Dorr, Francisco
dc.contributor.author
Varela, Francisco
dc.contributor.author
Alessandro, Lucas
dc.contributor.author
Goicochea, María Teresa
dc.contributor.author
Fernandez Slezak, Diego
dc.contributor.author
Farez, Mauricio Franco
dc.date.available
2022-07-27T19:13:40Z
dc.date.issued
2018
dc.identifier.citation
Accuracy and safety of an artificial intelligent system for nonacute headache diagnosis; 70th Annual American Academy of Neurology Annual Meeting; Los Ángeles; Estados Unidos; 2018; 1-6
dc.identifier.issn
0028-3878
dc.identifier.uri
http://hdl.handle.net/11336/163320
dc.description.abstract
Objective: Evaluate accuracy and safety of an artificial intelligent (AI) system for nonacute headache diagnosis. Background: Headache is the main cause of neurologic consultation, entailing high cost in healthcare systems and a great impact in quality of life of patients suffering from it. Moreover, the access to qualified specialists and appropriate treatment is not ensured, especially in areas with low number of neurologist per capita. We hypothesize that and AI-system could assist in the diagnosis of headaches with a precision and safety comparable to a specialist. Design/Methods: We reviewed a database of 580 clinical records of patients with headache as chief complaint. Clinical records were processed with Latent Semantic Analysis (LSA) and a Support Vector Machine (SVM) model was trained. The definite diagnosis was the one given by the specialist at the consultation. We compared the SVM model performance at classifying the headache as primary versus secondary with two general neurologist. Finally, we used an interactive headache questionnaire filled by patients previous to the consultation and classified the headache with an automatic ICHD criteria system supplemented with a machine-learning model, comparing that diagnosis to the one given by neurologists. All the development and analysis was done using Python. Results: The SVM model trained after “reading” clinical records with LSA had a better performance in the diagnosis of secondary headache (sensitivity=90.2%; specificity=93%) in comparison with other neurologists (sensitivity=82%; specificity=85%). A correct headache diagnosis was achieved in 89–94% of the cases when ICHD criteria was combined with several machine-learning models. Conclusions: AI has a great potential for its application in headache diagnosis. Advancements in this field would both improve the accessibility to quality healthcare and optimize the time spent by health professionals. Disclosure: Dr. Acosta has nothing to disclose. Dr. Grimaldi has nothing to disclose. Dr. Dorr has nothing to disclose. Dr. Varela has nothing to disclose. Dr. Alessandro has nothing to disclose. Dr. Goicochea has nothing to disclose. Dr. Fernández Slezak has nothing to disclose. Dr. Farez has nothing to disclose.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wolters Kluwer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NONACUTE
dc.subject
HEADACHE
dc.subject
DIAGNOSIS
dc.subject
ARTIFICIAL INTELLIGENT SYSTEM
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Accuracy and safety of an artificial intelligent system for nonacute headache diagnosis
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-07-20T16:01:22Z
dc.identifier.eissn
1526-632X
dc.journal.volume
90
dc.journal.number
15
dc.journal.pagination
1-6
dc.journal.pais
Países Bajos
dc.journal.ciudad
Alphen aan den Rijn
dc.description.fil
Fil: Acosta, Julián. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Grimaldi, Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Dorr, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: Varela, Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Alessandro, Lucas. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Goicochea, María Teresa. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.description.fil
Fil: Fernandez Slezak, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: Farez, Mauricio Franco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://n.neurology.org/content/90/15_Supplement/P3.127.abstract
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
70th Annual American Academy of Neurology Annual Meeting
dc.date.evento
2018-04-21
dc.description.ciudadEvento
Los Ángeles
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
American Academy of Neurology
dc.source.revista
Neurology
dc.date.eventoHasta
2018-04-27
dc.type
Congreso
Archivos asociados