Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Accuracy and safety of an artificial intelligent system for nonacute headache diagnosis

Acosta, Julián; Grimaldi, Francisco; Dorr, Francisco; Varela, Francisco; Alessandro, Lucas; Goicochea, María Teresa; Fernandez Slezak, DiegoIcon ; Farez, Mauricio FrancoIcon
Tipo del evento: Congreso
Nombre del evento: 70th Annual American Academy of Neurology Annual Meeting
Fecha del evento: 21/04/2018
Institución Organizadora: American Academy of Neurology;
Título de la revista: Neurology
Editorial: Wolters Kluwer
ISSN: 0028-3878
e-ISSN: 1526-632X
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Objective: Evaluate accuracy and safety of an artificial intelligent (AI) system for nonacute headache diagnosis. Background: Headache is the main cause of neurologic consultation, entailing high cost in healthcare systems and a great impact in quality of life of patients suffering from it. Moreover, the access to qualified specialists and appropriate treatment is not ensured, especially in areas with low number of neurologist per capita. We hypothesize that and AI-system could assist in the diagnosis of headaches with a precision and safety comparable to a specialist. Design/Methods: We reviewed a database of 580 clinical records of patients with headache as chief complaint. Clinical records were processed with Latent Semantic Analysis (LSA) and a Support Vector Machine (SVM) model was trained. The definite diagnosis was the one given by the specialist at the consultation. We compared the SVM model performance at classifying the headache as primary versus secondary with two general neurologist. Finally, we used an interactive headache questionnaire filled by patients previous to the consultation and classified the headache with an automatic ICHD criteria system supplemented with a machine-learning model, comparing that diagnosis to the one given by neurologists. All the development and analysis was done using Python. Results: The SVM model trained after “reading” clinical records with LSA had a better performance in the diagnosis of secondary headache (sensitivity=90.2%; specificity=93%) in comparison with other neurologists (sensitivity=82%; specificity=85%). A correct headache diagnosis was achieved in 89–94% of the cases when ICHD criteria was combined with several machine-learning models. Conclusions: AI has a great potential for its application in headache diagnosis. Advancements in this field would both improve the accessibility to quality healthcare and optimize the time spent by health professionals. Disclosure: Dr. Acosta has nothing to disclose. Dr. Grimaldi has nothing to disclose. Dr. Dorr has nothing to disclose. Dr. Varela has nothing to disclose. Dr. Alessandro has nothing to disclose. Dr. Goicochea has nothing to disclose. Dr. Fernández Slezak has nothing to disclose. Dr. Farez has nothing to disclose.
Palabras clave: NONACUTE , HEADACHE , DIAGNOSIS , ARTIFICIAL INTELLIGENT SYSTEM
Ver el registro completo
 
Archivos asociados
Tamaño: 685.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/163320
URL: https://n.neurology.org/content/90/15_Supplement/P3.127.abstract
Colecciones
Eventos(OCA CIUDAD UNIVERSITARIA)
Eventos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Accuracy and safety of an artificial intelligent system for nonacute headache diagnosis; 70th Annual American Academy of Neurology Annual Meeting; Los Ángeles; Estados Unidos; 2018; 1-6
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES